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Abstract

Automation transforms the combination of tasks performed by machines and humans, and reshapes

existing labor markets by replacing jobs and creating new ones. This paper analyzes the extent to which

these transformations can differ by gender. To do so, I focused on manufacturing, a widely robotized

sector, to empirically analyze whether industrial robots are linked to female shares from an industry-

level approach. Further, I surmise that robots and female shares can have a non-linear relationship which

depends on female labor force participation. I construct an industry-level panel dataset consisting of

11 manufacturing industries operating in 14 countries during 1993-2015. Using dynamic panel data

models and treating robotization as endogenous, the estimates associate robotization with a 0.1% to

0.4% increase in female shares. However, this association depends on female labor force participation

rates. As female labor force participation increases, the positive association between robotization and

female share decreases. These findings are robust to partitions of the sample, alternative measures of

robot penetration and different estimation techniques.
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1 Introduction

Technological change and the automation of work are shifting the frontier between tasks performed by

humans and those performed by machines, growing concerns about its impact on labor markets (Brynjolf-

sson & McAfee, 2014; Graetz & Michaels, 2018; Acemoglu & Restrepo, 2020). Industrial robots1 have

advanced rapidly since the 1990s and are mainly put to work in the manufacturing sector. Nonetheless,

sectoral employment is at varying levels of exposure to automation, even within manufacturing, due to dif-

ferent compositions of routine and non-routine tasks and manual and analytical tasks (Autor et al., 2003;

Reijnders & de Vries, 2018; Dauth et al., 2017; Acemoglu & Restrepo, 2020). At the same time, occupa-

tions and industries are overwhelmingly segregated by gender through history, where manufacturing shows

an overall male domination (Goldin, 2014; England et al., 2020). Women tend to concentrate in industries

and perform tasks that are more prone to automation (Brussevich et al., 2019), and technological upgrading

has been linked to lower shares of women in the industry and manufacturing (Seguino & Braunstein, 2019;

Tejani & Kucera, 2021). Yet the net effect of robots and artificial intelligence (AI) in employment can be

either negative, neutral or positive (Graetz & Michaels, 2018; Hamaguchi & Kondo, 2018), its impact can

differ between women and men.

This paper brings together the literatures on the automation of work and the defeminization of the manu-

facturing to empirically analyze whether industrial robots impact the female share of manufacturing em-

ployment from an industry-level disaggregated approach. Gender approaches in the automation of work

literature have focused primarily on the role of robotization and investments in AI in driving gender wage

inequality (Ge & Zhou, 2020; Aksoy et al., 2021; Domini et al., 2022). Another body of literature that

evolved in parallel tracks has focused on how technological upgrading, in the form of labor productivity

gains rather than robot adoption, establishing a defeminization of manufacturing trend (Kucera & Milberg,

2000; Tejani & Milberg, 2016; Kucera & Tejani, 2014; Seguino & Braunstein, 2019; Tejani & Kucera,

2021). The defeminization of manufacturing literature finds technological upgrading together with rising

female labor force participation to reduce women’s opportunities in the industry (Seguino & Braunstein,

2019).

This paper hypothesizes that the impact of robots in female shares of manufacturing employment is non-

linear and that it hinges upon the participation of women in the workforce. The incorporation of women

in the labor market came along with a ”crowding out” effect in the services sector of female employment

1The International Federation of Robotics (IFR) defines industrial robots as ”automatically controlled, reprogrammable, mul-

tipurpose manipulator programmable in three or more axes, which can be either fixed in place or mobile for use in industrial

automation applications.”
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(Boserup, 1970; Ngai & Petrongolo, 2017; Seguino & Braunstein, 2019) and a subsequent defeminization

of manufacturing employment (Tejani & Milberg, 2016; Kucera & Tejani, 2014). Relatedly, female labor

force is considered in the literature of cultural values as a form of intergenerational transmission of gender

roles (Fernández, 2013; Gaddis & Klasen, 2014; Uberti & Douarin, 2023). Thus, the direction and the in-

tensity of the impact of robotization in female manufacturing employment can thus vary at different levels

of female labor force participation.

The paper constructs an industry-level panel dataset consisting of 11 industries operating in 14 developed,

emerging and developing countries over the period 1993-2015 to estimate the impact of industrial robots

in the share of women in manufacturing employment. The dataset is built combining information from

United Nations Industrial Development Organization (UNIDO), the International Federation of Robotics

(IFR), UN Commodity Trade Statistics Database (COMTRADE), together with country-level data sources

(World Bank, ILO). I specify status and dynamic panel data models and estimate them using fixed-effects

and the Generalized Method of Moments (GMM). Thus, the models account for the influential role of pre-

vious levels of female shares in contemporary gender distribution of manufacturing employment, and treat

robotization as endogenous using internal instruments.

The findings suggest that robotization increases the presence of women in manufacturing employment.

However, this association depends on female labor force participation. As female labor force participation

increases, the positive effect of robots in female shares in manufacturing industries is reduced, and at very

high levels, the role of robotization becomes insignificant. A possible interpretation for this finding is that

the robotization reduces the physical demands of manufacturing jobs, which can increase female-labor de-

mand at initial levels of labor force participation of women (Galor & Weil, 1993; Rendall, 2013; Juhn et al.,

2014; Rendall, 2017; Beaudry & Lewis, 2014). Nonetheless, the rise of female labor force could offset this

increasing female-labor demand and divert female employment into the service economy (Ngai & Petron-

golo, 2017; Petrongolo & Ronchi, 2020). Simultaneously, gender stereotypes, gender discrimination and

the competition for jobs among genders in the advent of technological upgrading of manufacturing jobs can

limit the rise in female-labor demand in robotized industries (Kucera & Tejani, 2014; Seguino & Braunstein,

2019).

The contribution of this article is two-fold. First, I expand existing works on the links between robots and

gender differential effects (Brussevich et al., 2019; Aksoy et al., 2021; Ge & Zhou, 2020; Domini et al.,

2022) and labor force participation (Grigoli et al., 2020) by using an industry-level disaggregated panel data

approach that focuses on manufacturing employment. Second, I complement the literature on the effects of

technological upgrading and structural change in the defeminization of manufacturing (Seguino & Braun-

2



stein, 2019; Tejani & Kucera, 2021) by identifying the role of robotization in female shares. Understanding

the causal direction and magnitude of these mechanisms, specifically in the economic and social aftermath

of the COVID-19 pandemic (Collins et al., 2021), is crucial to correct for the gendered imbalances in the

sectoral composition of the workforce. To my best knowledge, this is the first attempt to test a non-linear

association between industrial robots and female shares in manufacturing from an industry-level disaggre-

gated dynamic panel data approach.

The paper is structured as follows. Section 2 provides a literature review and elaborates on the hypothe-

sis to be tested. Section 3 explains the dataset and provides descriptive statistics. Section 4 presents the

econometric model while Section 5 brings the first set of results. Section 6 expands the model and provides

dynamic panel models that treat robots as endogeneous. Section 7 concludes.

2 Background and hypothesis

Existing literature establish direct links from robotization to gender differences in employment and wages.

Brussevich et al. (2019) employ data on 30 advanced and emerging economies to show that women are at

significantly higher risk for displacement by automation. To the contrary, Acemoglu & Restrepo (2020) use

data on the US labor market and show that exposure to robots is related with a negative effect on employment

for both women and men, although it is higher for men. Also for the US, P. Cortes & Pan (2019) explore

the interplay between skills and gender impacts of automation, and find that women experience larger em-

ployment displacement in the middle of the skill distribution relative to men. Similarly, G. M. Cortes et al.

(2020) look at the US and Portugal to find that less automation risk of women in the US and Portugal.

The association between robotization and gender wage gaps remains unclear in the literature. Aksoy et al.

(2021) uses data from 20 European countries in two points in time (2006 and 2014) and relate industrial

robots with increasing gender wage gaps. To the contrary, Ge & Zhou (2020) data on the variation in au-

tomation and gender gaps in US local labor markets between 1990 and 2015, and find that computer capital,

but not industrial robots, increase gender pay gaps. Also for the US, together with Portugal, G. M. Cortes

et al. (2020) do not find that automation leads to a significant effect in gender gaps. For the case of Japan,

Hamaguchi & Kondo (2018) emphasize the role of gender gaps in skill utilization, rather than the skill gap

itself. Finally, Domini et al. (2022) uses French firm-level data for the 2002-2017 period to that find that the

adoption of automation and AI were not followed by an increase in gender wage inequality.

Previous econometric analyses of the role of technological change in the share of women in the manufac-

turing find support for the defeminization of the manufacturing hypothesis. Seguino & Braunstein (2019)
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use a panel of 94 developed and developing countries during 1991-2015 and find a significant and negative

association between labor productivity and the relative concentration of women in industrial employment.

Seguino & Braunstein (2019) also find that the female to male ratio of labor force participation is negatively

associated with women in the industry. Nonetheless, they use a country-level aggregate data, and do not

consider the interaction between technological upgrading and female labor force participation. In a related

work, Tejani & Kucera (2021) use UNIDO database on 22 industries, 14 countries during 1990-2015 to

analyze the role of rising productivity in the share of women in manufacturing industries. They find that

technological upgrading is negatively correlated with the share of women in manufacturing industries. How-

ever, these two previous works on the defeminization of manufacturing do not consider industrial robots on

their econometric models, nor consider a non-linear relationship between technological change and gender

segregation. The econometric model provided in Section 4 also adds to these previous empirical works by

using dynamic panel data models and this controlling for the significant role of previous female shares in

manufacturing employment.

This paper draws on the above-mentioned findings on the gender impacts of automation and the defeminiza-

tion of the manufacturing to study whether rising use of robots leads to a lower presence of women in man-

ufacturing industries. Further, the paper hypothesizes that female labor force participation can counteract

the role of robotization in the share of women in manufacturing industries. The argument for a non-linearity

in the impact of robots on women is supported by two previous strands in gender economics literature,

namely the cultural values literature (Fernández, 2013) and the structural change literature (Boserup, 1970).

First, from the perspective of cultural values, the literature considers the intergenerational transmission of

gender roles, for which female labor force participation is considered a yardstick of the economic behav-

ior of future generations of women (Fernández et al., 2004; Fernández & Fogli, 2009; Fernández, 2013).

Women’s integration in the paid workforce serves as a reference for gender norms and cultural adequacy

of existing jobs. Higher integration of women as paid workers can have countervailing effects in gender

sectoral segregation. On the one side, it might reflect gender progressive ideals and gender equality in the

social prescriptions, thus increasing the role of women in manufacturing with rising robotization. On the

other, female labor force participation rates, can help create gender-typical conducts, where certain jobs and

sectors are blocked for genders, and thus, factoring gender segregation.

Second, the participation of women in the workforce throughout the process of structural change can medi-

ate the impact of robotization in the female share of manufacturing employment.2 The increasing participa-

2The literature identifies complex interactions between gendered labor markets and skill-biased adoption of industrial robots

can limit the share of manufacturing employment with relatively better working conditions and wages than other jobs in agri-
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tion of women in the labor market and the marketization of household production had led to a feminization

of the service sector (Siminski & Yetsenga, 2022; Beaudry & Lewis, 2014). Specifically, the care sector has

accrued female employment in the last decades. Structural changes can set into motion a gendered process,

as for instance the U-shaped relation between female labor force participation and economic development in

the U.S. that came together with first a decline in agricultural employment, and second, a rise of the service

employment (Goldin, 1994; Gaddis & Klasen, 2014; Uberti & Douarin, 2023). Although social norms and

stigma attached to women working in manufacturing jobs shifted drastically after the 1950s (Dinkelman

& Ngai, 2022), other gender gaps in preferences can emerge to reduce the presence of women in male-

dominated sectors Falk & Hermle (2018); England et al. (2020). The types of tasks that women perform

in male-dominated sectors, such as the manufacturing, can vary according the general level of women in

the paid force. While robotization can shift toward cognitive over physical skills in the workplace, favoring

opportunities for women (Rendall, 2013; Beaudry & Lewis, 2014), gender norms might ultimately divert

this potential rising female-labor demand.

3 Data and descriptive statistics

I construct a country-industry panel dataset consisting of 11 industries operating in 14 countries during

1993-2015. This database contains information on industrial statistics, robot penetration and trade data

at industry level, along with country-level data. The database combines information at industry-level and

country-level from 5 main data sources, namely the UNIDO database, IFR, COMTRADE; Word Bank

World Development Indicators (WDI) database and International Labor Organization (ILO). Supplementary

material explains in detail the construction of the database and the methods used for the harmonization of

the industrial classifications of the various data sources, and all the necessary information to replicate the

econometric analysis.

culture and service sector (Seguino & Braunstein, 2019). In addition to that, the process of deindustrialization as part of the

structural transformation can increase the competition for manufacturing jobs (Rodrik, 2016). The relatively lower female labor

market attachment and higher unpaid care work burden (Charmes, 2019) can intensify the stratification of the labor market by

which women play a secondary role in the workforce.
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Figure 1: Industry Classification: Industrial Robots and Female Share by Industry

Figure 1 provides the resulting classification of industries after harmonizing the data sources of the database,

which divides manufacturing in 11 industries. It plots the average number of industrial robots over the pe-

riod considered and the average female share by industry (1993-2015). Women are over-represented in

textiles, food, beverages and tobacco products, which are among the least robotized industries. Electri-

cal/electronics has a female share above the average, and at the same time, show high levels of robotization.

However, automotive, which is a highly robotized industry, employs a low fraction of women. It should be

noted that the panel database here employed is unbalanced, and therefore, some cells are under-represented

relative to others.3

Figure 2 compares the changes in robotization (x-axis) with changes in female shares in industry’s em-

ployment (y-axis). As the panel database is unbalance, I consider the change between the first observation

and last observation per country-industry cell.4 Thus, I compare changes in female shares in manufacturing

3Figures A1 and A2 in the Appendix show respectively the evolution of the number of industrial robots and share of women

by industries and by countries in the sample, and Figure A3 provides the evolution of female labor force and female share in

manufacturing in the sample countries. Supplementary Data Appendix provides also information on the availability of countries

by year in the database.
4Outliers are removed from the Figure 2 by considering data points in the range between the 5th and 95th percentiles.
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industries and changes in the number of industrial robots for the period 1993-2015 attending to the time cov-

erage for each cell. The correlation shows a slight negative slope, meaning that increasing robot penetration

correlates with lower shares of women in manufacturing employment.

Figure 2: Changes in Industrial Robots and Female Shares (1993-2015)

4 Empirical strategy

I specify the following econometric model in Eq.1 to identify the role of industrial robots in female employ-

ment share in manufacturing industries. The database is therefore a three-way panel dataset with observa-

tions by industry (i), country (c) and year (t).

fict = β0 + β1Robic,t−1 + β2FLFPc,t−1 + β3Rob ∗ FLFPic,t−1 +X ′
ic,t−1 + Z ′

c,t−1β + vict

vict = ωi + δc + γt + ϵict

i = industry; c = country; t = year;

(1)

where fict is the female share in industry i, country c and year t, computed as the ratio of the number of

women in industry i by total employment in industry i. The focal explanatory variables in this analysis are

Robic,t−1, FLFPc,t−1 and Rob ∗ FLFPic,t−1 which refer respectively to robotization, female labor force

participation (FLFP) and the interaction between robotization and FLFP. X ′
ic,t−1 is a set of country-industry

level control variables whereas Z‘c,t−1 is a set of country-level covariates. The parameters ωi, δc and γt

constitute the idiosyncratic terms for industries, countries and time, whereas ϵict stands for the error term.
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Explanatory variables:

Robotization is measured using the inverse hyperbolic sine (IHS) transformation of the annual change in

the stock of industrial robots per 10,000 workers in the corresponding country-industry in 1980, provided

in Eq.2. The IHS transformation considers the skewness of the distribution of industrial robots and the high

number of zeros in the variable. The logarithmic transformation is undefined at zero, and thus, observa-

tions with zero industrial robots would be dropped from the analysis and bias the estimates (G. De Vries

et al., 2021). The IHS transformation behaves similarly to a log transformation for positive values, but has

the added benefit of remaining defined for zeroes and negative values (Burbidge et al., 1988; Bellemare &

Wichman, 2020).

Robotizationict = IHS[
Robotsict

10, 000 ∗ Employeesic,1980
− Robotsic,t−1

10, 000 ∗ Employeesic,1980
] (2)

The choice of the base level of employment in 1980 draws on Graetz & Michaels (2018).5 In principle, the

level of employment back in 1980 should be less affected by the levels of industrial robots and robot penetra-

tion in contemporary trends and might overcome endogeneity concerns in the total number of employment.

Nonetheless, using alternative reference years of industry employment, such as 1993 as the staring date of

the database, does not alter the main results of the paper and are available on request.

5The influential work of Graetz & Michaels (2018) provides an instrument for analyzing the causal role of robotization in

employment. For computing their instrument, they rely on employment levels in 1980. They argue this year was well before

robots became ubiquitous, which can provide an exogenous baseline for changes in subsequent years after 1993, from which the

IFR data is available.
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Table 1: Descriptive Statistics of Selected Key Variables

Variable Obs Mean Std. Dev. Min Max

Female share 1,147 .285 .199 0 .858

IHS male employment 1,147 11.33 2.145 3.527 15.403

IHS female employment 1,147 10.025 2.516 0 15.226

Industrial robots (stock) 1,147 2322.286 13870.87 0 151774

Installations 1,147 193.229 1269.738 0 20823

IHS Robotization (stock) 1,147 .003 .016 0 .159

IHS Robotization (installations) 1,147 0 .002 0 .024

Robots per 10,000 workers 1,147 2.513 29.228 0 460.815

Share of robots 1,147 .088 .193 0 1

Share of installations 1,147 .093 .217 0 1

Female labor force participation 1,147 .48 .152 .23 .78

Table 1 presents descriptive statistics of the main variables used in the analysis related to share

of women in manufacturing, robot penetration and FLFP. Sources of data and definition of all variables are

in Appendix. The main outcome variable in this paper is the industry female share, computed as the ratio

of female employment to total employment in industry i, country c in time t. It ranges from 0, meaning

that there are no women in that industry (the unique case is ”All other manufacturing branches” in 1998 in

Bulgaria), and the maximum share of women in the sample is 85%, which corresponds to ”Textiles” in 2014

in Lithuania. Apart from the share of women by industries as the main dependent variable in the analysis

below, I provide models that employ the IHS transformation of female and male employment as dependent

variables as robustness checks.

Control variables:

The identification strategy in Eq. 1 includes a set of industry-level control variables that accounts for three

main aspects: compositional shifts within the manufacturing, capital intensity and international trade. As

female manufacturing employment is usually crowded into low value-added industries (Tejani & Kucera,

2021), the model controls for the share of employees in industry i to total manufacturing employment and

gross fixed capital formation by industries. Exposure to international trade at industry-level is an important

factor to control for since previous research finds gender bias in the employment effects of globalization

(Kucera & Milberg, 2000; Juhn et al., 2013). For this, the model includes the share of industry i in the total

manufacturing exports of goods. Nonetheless, evidence suggests that technology is a more decisive factor
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in changing employment structure and drive inequality and job polarization than international trade (David

& Dorn, 2013; Goos et al., 2014). Indeed, technological upgrading is associated with greater effects in the

shifts of female employment than globalization (Tejani & Milberg, 2016).

A set of country-level control variables includes that captures the potential correlations between structural

change, economic development, industrial policy or gender disparities in educational attainment with the

dependent variable. One of the most relevant factors explaining unbalances in the gender distribution of

industrial employment, apart from technological upgrading, is structural change (Gaddis & Klasen, 2014;

Kucera & Tejani, 2014; Seguino & Braunstein, 2019). A decline in relatively good industrial sector employ-

ment during the process of structural change might lead to a consequent job competition among genders,

which is proven in the literature to tend to be more costly for women than for men. Additionally, increasing

the share of capital-intensive production might couple with gender norms designating men as breadwinners

and women as secondary workers. On top of it, gender stereotypes fuelling discriminatory hiring practices

might further deter the entrance of women in new capital-intensive, high-value-added employment in man-

ufacturing. Per capita GDP annual growth rate is included on the assumption that higher levels of economic

development might ease job competition and provide better access of women to jobs of quality (Seguino

& Braunstein, 2019). Foreign direct investment (FDI), together with tariffs weighted in manufacturing are

also included as proxies of the global integration of the economy and country industrial and trade policies.

Finally, the gender parity gap in literacy of adults is included to control for educational attainment differ-

ences between women and men which could decisively impact on.6

Macroeconomic panel data are likely to be characterized by cross-sectional or spatial dependence, for which

Driscoll & Kraay (1998) developed an estimator that computes alternative standard errors to alleviate such

issues. Indeed, robot adoption in a country can unleash spillover effects in employment of neighbouring

countries. Faber (2020) shows sizeable negative impacts from US robotization on employment in Mexico.

Along similar lines, the linkages between trade openness and defeminization of manufacturing (Tejani &

Milberg, 2016) can also impose cross-dependency biases in the estimates. To alleviate endogeneity concerns

due to cross-sectional correlation in the estimation of the above panel data model, I employ the Driscoll &

Kraay (1998)’s standard errors in the fixed-effects models provided below. The estimates are thus well

calibrated in the presence of cross-sectional or time dependence. I follow Hoechle (2007) to perform the

6Several other covariates were considered in separate models upon request, but came at the cost of significantly reducing

the number of observations without improving the efficiency of the estimates. Among these other controls are the male rate of

unemployment, the female share of mid-skill occupations, fertility rates, and different measures of educational attainment and

disparities by gender.
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adjusted Hausman test robust to spatial and temporal dependence, which justifies the use of fixed effects

models in the panel dataset here used.

4.1 Limitations and potential solutions

The econometric analysis below is limited by at least two main challenges, namely data selection and

endogneneity biases. The first challenge is related to the sample selection and data collection and rises

concerns about the heterogeneity of the sample of countries here collected. Among these data selection

concerns is the issueof the inclusion of Japan in the database. There are a number of reasons why including

Japan in this analysis might distort the results. First, Japan is a world-wide exporter of industrial robots

and is leading the automation of work.7 Indeed, the diffusion of robots first started in the early 70s, to

spread to other advanced economies such as Germany (Cette et al., 2021). Consequently, Japanese indus-

tries are likely to be highly robotized relative to the rest of sample countries and be outliers. Second, the

IFR computes the stock of industrial robots as the sum of annual robot installations over 12 years with im-

mediate withdrawal from service or replacement thereafter. However, this number is directly provided by

the Japanese national robot association (JARA) (Jurkat et al., 2022), and thus, can suffer from measurement

errors as being computed differently from the rest of countries in the IFR database. Finally, Japanese data

were subject to substantial reclassification of the machines classified as robots (Graetz & Michaels, 2018),

and Acemoglu & Restrepo (2020) and the IFR recommend excluding Japan for cross-country comparisons.

Jurkat et al. (2022) suggest that starting from 2011, Japanese data should pose no problem in econometric

models, but last data point available for the UNIDO industry-level data on the share of women in Japanese

manufacturing industries is 2010. Therefore, there is no data availability to matching the IFR data from

2011 onwards and UNIDO data for Japanese country-industry cells.

Taking into account these potential threats, I include Japan to have a greater variability in the data, specifi-

cally relative to variability of educational trends, FLFP and country-level covariates and increase the number

of observations. Having a counterfactual in the estimates, such as the case of a highly robotized economy

with a relatively high level of FLFP and both declining use of robots and female shares in manufacturing,

will provide the regression model with higher variability in the three key variables of the paper. Nonethe-

less, I systematically drop Japan from the sample to check the sensitivity of the results to the inclusion of

Japanese data.8

7IFR https://ifr.org/news/japan-is-worlds-number-one-robot-maker/ last access 15 March 2023
8Some works of the reference literature includes Japan in empirical analyses without rising further concerns (Jung & Lim,

2020; Cette et al., 2021; Anelli et al., 2021). Other works that crucially drop Japan and provide a discussion on this issue are
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Related to data selection issues is how representative the sample of countries employed here is in a world-

wide context and its relevance for our understanding of the gender labor market effects of robot penetration.

Figure 3 shows the share of the total of industrial robots of the sample industries to the total of industrial

robots of the IFR database that contains information on 71 countries (see IFR data). When Japan is included

in both the sample of countries and the world totals, the sample here used represents on average a 3% of

the total IFR database.9 When dropping Japan from both the sample and the total IFR database, the sample

here employed represents 6% of the latter. In this context, ”Other transport equipment” represents 15% of

the total IFR database, ”Electrical/electronics” around 13%.

Figure 3: Share of Sample Industrial Robots to IFR Total Database

The second challenge relates to endogeneity issues emerging from omitted variable biases, feedback ef-

fects of previous levels of gender segregation in manufacturing, and reverse causation of robot penetration.

Female share of employment at industry levels can be influenced by industry-specific policies that try to

involve more women in those industries, or country-level policies focus to reduce industrial segregation and

gender equality in the labor market. This in turn, can affect both hiring decision and the adoption of robots,

Graetz & Michaels (2018) and Acemoglu & Restrepo (2020).
9Notice that Japanese data is not available for few years in the database, as the last point observation of UNIDO database for

female share of industries for Japan is 2010.
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which will incur in a reverse causation problem (Aksoy et al., 2021). Alternatively, firms may adopt robots

in response to economic shocks at both country and industry levels, which can further affect the gendered

hiring decisions.10

The issue of endogeneity has largely discussed in the literature of automation of work. One of the more pop-

ular instrumental variables approach in the literature is the one provided in Graetz & Michaels (2018), who

construct two industry-specific instruments, namely replaceable hours and reaching and handling tasks.

The first instrument is the share of labor input that can be replaceable by robots at industry level and was

computed by Graetz & Michaels (2018) using the IFR data in 2012 and information on the distribution of

hours across occupations and industries from the 1980 U.S. Census, dating back to the rise of robotization.

They identified those occupations that could have been replaced by robots in 2012, and the occupational

distribution by industry in 1980, to provide an industry-level replaceability measure. The other instrument

provided in Graetz & Michaels (2018) is a measure of the prevalence of the reaching and handling tasks,

which are typically performed by industrial robots, where in each industry, relative to other physical de-

mands, prior to 1980. The instruments in Graetz & Michaels (2018) are not free from limitations. Firstly, as

already suggested in G. J. De Vries et al. (2020), these instruments are based on US data and thus they might

differ if constructed using data from other countries. Secondly, the data do not vary across time, and thus do

not allow for controlling for country and industry heterogeneity across time. Bekhtiar et al. (2021) provides

an in-depth discussion of the instruments of Graetz & Michaels (2018), and other type of instruments are

employed in Anelli et al. (2019).

Section 6 alleviates omitted variable biases and endogeneity issues related to robot penetration by specifying

a dynamic panel data model that includes the first lag of the dependent variable (female share) in the set of

explanatory variables. Using the Generalized Method of Moments (GMM) (Arellano & Bond, 1991; Blun-

dell & Bond, 2000) avoids the so-called Nickel bias (Nickell, 1981) while allows accounting for the effect

that previous share of women might have in contemporary (de)feminization trends of the manufacturing.

To tackle the endogeneity concerns of a casual link from the share of women in the robot adoption, I treat

robotization as an endogenous variable in the context of GMM. Due to the characteristics of the dataset here

constructed, the GMM technique for circumventing endogeneity issues, that is using internal instruments,

outperforms the use of the instrument in Graetz & Michaels (2018), as their instrument is time-invariant

within industries, along to the limitations discussed in Bekhtiar et al. (2021).

10I note here the work of Jung & Lim (2020), who use IFR data and a simultaneous equation to consider two-way causal

relationships between the expansion of industrial robots and labor characteristics, among them, the proportion of women in

manufacturing.
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5 Static panel data results

5.1 Main results

Table 2 shows the results of the regression model in Eq. 1 using panel data fixed-effects models. All the

estimates associate robotization with an increasing share of women in manufacturing industries. Including

year fixed effects, country and country-time fixed effects do not alter this finding. However, the interaction

between robotization and FLFP is negative and significant (Columns 2-5). Therefore, the marginal asso-

ciation between robotization and women in manufacturing depends on the country level of women in the

workforce. Dropping Japan from the database does not alter the results.

Alongside with the coefficients on the main independent variables (robotization, FLFP and its interaction),

Table 2 shows the elasticities of the models to help the interpretation of the results. I compute the elasticity

of robotization and the interaction with FLFP, and evaluate them at minimum, mean and maximum sam-

ple values of FLFP.11 Column 1 associates a ten percent increase in robotization with a 0.16% increase in

the share of women in industries within the manufacturing. Adding the interaction between robotization

and FLFP (Columns 2-5) increases the coefficient of robotization up to 4.824 with an elasticity of 0.052

and elasticity of the interaction is -0.042 (Column 5, Table 2), meaning that an increase in FLFP reduces

the elasticity of robotization relative to the share of women. The results of the model including year fixed

effects, country-industry fixed effects and the whole set of controls suggest that a ten percent increase of

robotization is linked to a 0.36% increase of women in industrial employment at the minimum level of

FLFP. This elasticity is reduced when FLFP increases: a similar increase in robotization is associated with a

0.25% increase in female shares when FLFP is at its sample mean (FLFP of 48%) and drops to 0.12% when

FLFP is at its maximum (FLFP of 78%). Column 6 replicates the saturated model in Column 5 without

Japan, providing similar results albeit slightly lower in magnitude.

11All models in Table 2 are linear-arcsinh, meaning that the dependent variable is in levels and the independent variable is

IHS transformed. The formula for computing the elasticities is given by ˆξyx = β̂
y

x√
x2+1

(Bellemare & Wichman, 2020). To keep

the consistency of the IHS transformation of the measure of robot penetration, the results on the interaction are also expressed in

elasticities.
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Table 2: Robots and Women in Manufacturing: Baseline models

Dependent variable: Industry female share

(1) (2) (3) (4) (5)

All All All All No Japan

Robotization 1.307∗∗∗ 3.794∗∗ 3.008∗∗ 4.824∗∗∗ 4.120∗∗

(0.272) (1.340) (1.106) (1.171) (1.618)

FLFP 0.001∗∗ 0.001∗ 0.004∗∗∗ 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

Robotization * FLFP -0.047∗∗ -0.037∗ -0.066∗∗∗ -0.048∗∗

(0.022) (0.018) (0.019) (0.032)

Elasticity of coefficient 0.016 0.046 0.032 0.052 0.041

Elasticities of interaction coef. -0.043 -0.028 -0.042 -0.042

Elasticity at min. FLFP (23%) 0.036 0.026 0.042 0.031

Elasticity at mean FLFP (48%) 0.025 0.018 0.031 0.02

Elasticity at max. FLFP (78%) 0.012 0.010 0.019 0.008

No. of Observations 1,147 1,147 1,147 1,030 895

No. of Groups 90 90 90 90 81

Within R-squared 0.021 0.044 0.272 0.240 0.231

Year fixed effects no yes yes yes yes

Country-year fixed effects no no yes yes yes

Industry-level controls no no yes yes yes

Country-level controls no no nos yes yes

Japan included yes yes yes yes no

Table 2 notes: Independent variables are one-period lagged. Estimates are based on fixed effects models of equation in (1).

Robotization is measured as the inverse hyperbolic sine transformation of change in robots per employees, see (Bellemare &

Wichman, 2020). Driscoll-Kraay standard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01. Data Sources: own

calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.

Figure 4 shows the marginal effects of robotization in female share in industries (y-axis) as estimated in Col-

umn 5 (Table 2), by levels of FLFP (x-axis) where Japan is dropped from the database, with the histogram of

FLFP in the background. Robotization is positively associated with female shares in manufacturing indus-

tries, although it reduces as FLFP increases. Nonetheless, for a certain threshold of FLFP, the association is

not statistically significant.
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Figure 4: Marginal Effects of Robotization in Female Share (estimates from Column 6, Table 2)

The primary measure of robotization in this paper is the IHS transformation of annual change of industrial

robots, with respect to the level of employment in the industry in 1980. I check the stability of the main

findings in Table 2 by using alternative measures of robot penetration. Employing the number of industrial

robots per 10,000 industrial workers (Table A3, Appendix), which allows using a substantial higher number

of observations than in Table 2, provides similar results. Supplementary materials add additional sensitivity

checks using alternative measures of robot penetration, and confirm the results of Table 1. For one of these

sensitivity checks, I adapt the concept of distance to the World Technology Frontier of (Caselli et al., 2006)

and (Acemoglu et al., 2006) to the case of robot penetration and deal in greater detail with the issues of the

inclusion of Japanese data in the IFR database (Table S2). Finally, and following (Acemoglu & Restrepo,

2022), I replicate these analyses using the number of installations rather than the stock of industrial robots

(see Figure S2, Table S3 and S4 in Supplementary materials).

5.2 Heterogeneity analysis

The sample of countries in the database differs greatly in terms of the participation of women in the paid

workforce and economic development. Vietnam and Lithuania stand out in terms of FLFP with an average
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of respectively 78% and 68%, whereas India and Turkey have a FLFP level of around 30% (see Table A1 in

Appendix). Regarding economic development, Kuwait and Japan surpass on average a GDP per capita of

30,000$, whereas India and Vietnam have a GDP per capita of around 1,000$. Although the fully saturated

model in Column 4 (Table 2) controls for economic growth and structural change, which are crucial to

consider the economic composition of the countries in the sample (e.g. oil exporters countries such as

Kuwait), I consider here partitions of the database based on two different levels of FLFP and GDP per

capita levels. Country-industry observations for which FLFP was lower than the sample average (48%) are

here considered as low-FLFP (India, Indonesia, Kuwait, Malaysia, Malta, Mexico, Morocco, Turkey) and

are used in model in Column 1, Table 3. Country-industry observations with a FLFP above or equal to the

sample average are considered high-FLFP and are used in model in Column 2, Table 3.12

The results using low-FLFP and high-FLFP partitions of the database provide similar results. This suggests

that FLFP per se, rather than the initial level of FLFP, mediates the impact of robotization on the share of

women in manufacturing employment.

I also divide the database according to low and high levels of economic development.13 Country-industry

observations with low levels of income per capita are used in Column 3 of Table 3 (namely, Bulgaria,

India, Indonesia, Malaysia, Morocco, Lithuania, Philippines, Turkey, Vietnam), whereas country-industry

observations with high income levels are used in Column 4 of Table 3 (namely, Croatia, Japan, Kuwait,

Malaysia, Malta, Mexico, Lithuania and Turkey). The results of the partition based on economic growth

levels indicate that the main findings are mostly driven by countries with relatively high levels of economic

growth. This might suggest that robotization is likely to influence the gender composition of manufacturing

industries once a certain level of GDP per capita is reached. On the other hand, robotization has no effect

on the gender distribution of manufacturing employment in countries with low levels of GDP per capita.

One interpretation can be that the type of robots implemented in low-income countries are fundamentally

different and less relevant than those in mid or high-income countries. Nonetheless, it falls beyond the scope

of this paper to delve deeper on the type of robotization.

12All countries in the sample show at some data point in the period considered (1993-2015) a FLFP higher than the sample

average
13This division in low and high economic development levels are made on the basis of the percentile 50th of the GDP per

capita of the sample of countries (7055.936$).
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Table 3: Robots and Women in Manufacturing: Baseline models, heterogeneous effects by FLFP and GDP

Dependent variable: Industry female share

Partitions based on FLFP Economic Development

(1) (2) (3) (4)

Low FLFP High FLFP Low income High income

Robotization 9.550∗∗∗ 9.378∗∗∗ -9.061 4.092∗∗∗

(3.204) (1.654) (6.024) (0.886)

FLFP 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗ 0.000∗∗

(0.000) (0.000) (0.000) (0.000)

Robotization*FLFP -0.227∗∗ -0.137∗∗∗ 0.507∗∗∗ -0.056∗∗∗

(0.087) (0.024) (0.146) (0.014)

Elasticity of coefficient 0.116 0.114 0.035

Elasticity of interaction coef. -0.168 -0.101 -0.029

Elasticity at min. FLFP (23%) 0.077 - 0.029

Elasticity at mean FLFP (48%) 0.035 0.065 0.022

Elasticity at max. FLFP (78%) - 0.035 0.013

No. of Observations 603 454 562 468

No. of Groups 63 45 63 45

Within R-squared 0.326 0.189 0.184 0.396

Year fixed effects yes yes yes yes

Country-year fixed effects yes yes yes yes

Industry-level controls yes yes yes yes

Country-level controls yes yes yes yes

Table 3 notes: Independent variables are one-period lagged. Estimates are based on fixed effects models of equation in (1).

Robotization is measured as the inverse hyperbolic sine transformation of change in robots per employees, see (Bellemare &

Wichman, 2020). Driscoll-Kraay standard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own calculations

based on UNIDO, IFR, COMTRADE, WDI and ILO.

6 Dynamic panel data results and extensions

6.1 Persistence of female shares and endogenous robotization

Table 4 shows the results once the first lag of the dependent variable in Eq. 1 is included in the set of

explanatory variables. Previous levels of female shares can influence current shares through different ways,
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as explained in Section 2. As a matter of fact, the estimates using dynamic panel data models suggest

that previous realizations of the share of women in manufacturing industries have a significant role in the

next period’s female share, which is positive and indicate a path dependency of the presence of women

in industries. Column 1 (Table 4) estimates the dynamic model using a fixed-effects estimator, and shows

that a ten percent increase in robotization is associated with a 0.23% increase in female shares when at low

levels of FLFP, and this elasticity drops to 0.01 at high levels of FLFP. 14

The fixed-effects estimates in Column 1 (Table 4) suffer from the so-called Nickel bias as the correlation

between the right-hand-side, lagged dependent variable (fic,t−1) and the error term (vict) does not tend to

zero even with higher number of observations (N ) (see (Nickell, 1981)). To solve for this bias, I estimate the

dynamic version of the model in Eq. 1 using the difference Generalized Method of Moments (diff-GMM)

(Arellano & Bond, 1991; Blundell & Bond, 2000; Roodman, 2009). The diff-GMM estimator applies

first-diferences to the regression equation to cancel time-invariant idiosyncratic terms of industries and

countries (ωi and δc, respectively), and then it uses lagged values of female shares (fic, t − 1) to internally

instrument itself. One potential problem arisen from the use of diff-GMM instead of the system GMM,

which estimates the equation in levels and applies first-diferences to the instruments, is that if female shares

are highly persistent, diff-GMM might suffer from a version of the weak-instrument problem (Blundell &

Bond, 1998). In separate models, I checked the consistency between the system GMM and the diff-GMM

estimates, where postestimation tests show similar consistencies in both types of GMM models. However,

in terms of efficiency, the diff-GMM outperformed system GMM as it uses a lower number of instruments

(Roodman, 2009).

Column 2 (Table 4) treats robotization as exogenous, while Columns 3 and 4 endogeneize robotization

using internal instruments in the context of diff-GMM. The results are slightly higher in magnitude than

those using the fixed-effects model. When using the diff-GMM, the results associate a ten percent increase

in robotization to an around 0.4% to 0.15% increase in female shares depending on the level of FLFP.

Dropping Japan from the database produces similar results. Figure 5 plots this non-linear relationship

between robotization and female share in manufacturing industries that depends on the level of FLFP based

on the results of Column 4 (Table 4) when Japan is dropped from the database.

14This result remains when by dropping one industry and one country from the database at a time (see Tables A4 and A5 in

Appendix).
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Table 4: Dynamic Panel Data Models (FE and GMM)

Dependent variable: Industry female share

(1) (2) (3) (4)

Robots treated as Exogenous Endogenous

Estimator FE ∆-GMM ∆-GMM ∆-GMM

Sample All All All No Japan

Female sharet−1 0.734∗∗∗ 0.340∗∗ 0.382∗∗ 0.371∗∗

(0.066) (0.165) (0.143) (0.148)

Robotization 2.374∗∗∗ 4.251∗∗ 3.116∗∗ 4.295∗∗

(0.662) (1.996) (1.295) (2.042)

FLFP 0.002∗∗∗ -0.007 -0.000 0.002

(0.000) (0.006) (0.002) (0.003)

Robotization * FLFP -0.033∗∗∗ -0.063∗∗ -0.042∗∗ -0.067∗

(0.011) (0.030) (0.019) (0.036)

Elasticity of coefficient 0.029 0.051 0.038 0.052

Elasticity of interaction coef. -0.024 -0.046 -0.032 -0.049

Elasticity at min FLFP (23%) 0.023 0.04 0.031 0.041

Elasticity at mean FLFP (48%) 0.017 0.029 0.023 0.028

Elasticity at max. FLFP (78%) 0.01 0.015 0.013 0.014

No. of Observations 1030 850 850 724

No. of Groups 90 90 90 81

Within R-squared 0.531

AR(2) 0.496 0.486 0.449

Diff-hansen 0.119 0.688 0.208

No. of Instruments 24 58 58

Year fixed effects yes yes yes yes

Country-year fixed effects yes yes yes yes

Industry-level controls yes yes yes yes

Country-level controls yes yes yes yes

Japan included yes yes yes no

Table 4 notes: The models include one-period lagged dependent variable. All independent variables are one-period lagged.

Robotization is measured as the inverse hyperbolic sine transformation of change in robots per employees, see (Bellemare &

Wichman, 2020). Driscoll-Kraay standard errors in parenthesis (Column 1) ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own

calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.
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Figure 5: Marginal Effects of Robotization in Female Share (diff-GMM)

6.2 Robotization and employment level by gender

The previous estimates provide evidence on a statistically significant link between robot penetration and

the gender distribution of manufacturing employment by industries. However, it remains to be tested the

extent to which robotization is associated to the levels of female and male employment. I consider separate

regression models for female and male employment as in Acemoglu & Restrepo (2020) to shed new light on

the effects of automation in gender labor market outcomes when using industry-level disaggregated data on

manufacturing. The models below use the IHS transformation of the level of female or male employment to

solve for the skewness of the data and the presence of zeros.15 The following estimates suggest that higher

robotization leads to an increasing female employment, although there is no significant association in the

case of male employment. This contrasts the findings in Acemoglu & Restrepo (2020), and thus suggests

different gendered labor markets outcomes in the aftermath of robotization outside the US.

15Thus, these are arcsinh-arcsinh models. The formula for computing the elasticities is ˆξyx = β̂

√
y2+1

y
x√

x2+1
as provided in

Bellemare & Wichman (2020).
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Columns 1-4 in Table 5 consider the IHS of female employment level while Columns 5-6 consider the IHS

of male employment level. For women, the estimates show a statistically significant and positive association

between robotization and employment, whereas for men the results are not statistically significant. Columns

1 and 2 use fixed-effects models to estimate respectively the static model and a dynamic model which in-

cludes female employment level in the set of explanatory variables. Columns 3 and 4 use diff-GMM treating

robotization as an endogenous variable. The results suggest that one percent change increase of robotization

is associated with a 0.17% increase in the presence of women in that precise industry, though at low levels

of FLFP. The results here corroborate the main hypothesis of the paper, that is, the association between

automation and gender distribution of sectoral employment in manufacturing hinges upon the participation

of women in the paid workforce. At mean and maximum sample levels of FLFP, the effect of robots is also

increasing female shares, although slightly lower in magnitude. These findings are robust to dropping Japan

from the database (Column 4, Table 5). Figure 6 shows graphically the interaction between robotization and

FLFP in female shares, showing the marginal effects obtained in the last Column that does not include Japan.

Table 5: Robots and Gender Employment in Manufacturing

(1) (2) (3) (4) (5) (6) (7)

Estimator FE FE ∆-GMM ∆-GMM FE FE ∆-GMM

Sample Women Men

No Japan

IHS female employmentt−1 0.588∗∗∗ 0.252∗∗∗ 0.250∗∗∗

(0.105) (0.052) (0.052)

IHS male employmentt−1 0.403∗∗ 0.558∗∗∗

(0.162) (0.131)

Robotization 39.898∗∗∗ 21.318∗∗∗ 48.175∗∗∗ 63.809∗∗∗ -10.773 -8.436 14.887

(10.235) (5.810) (11.059) (18.136) (6.750) (5.321) (20.210)

FLFP 0.095∗∗∗ 0.058∗∗∗ 0.009 0.006 0.106∗∗∗ 0.080∗∗∗ 0.005

(0.000) (0.016) (0.013) (0.012) (0.001) (0.020) (0.019)

Robotization * FLFP -0.551∗∗∗ -0.290∗∗∗ -0.659∗∗∗ -1.063∗∗∗ 0.190∗ 0.149 -0.183

(0.161) (0.092) (0.175) (0.364) (0.108) (0.088) (0.313)

Elasticity of coefficient 0.138 0 .074 0.166 0.220

Elasticity of interaction coef. -0.002 -0.001 -0.002 -0.004

Elasticity at min FLFP (23%) 0.138 0.074 0.166 0.219

Elasticity at mean FLFP (48%) 0.137 0.074 0.165 0.218
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Elasticity at max. FLFP (78%) 0.136 0.073 0.164 0.217

No. of Observations 1,030 1,030 850 724 1,030 1,030 850

No. of Groups 90 90 90 81 90 90 90

Within R-squared 0.641 0.745 0.809 0.849

AR(2) 0.218 0.205 0.377

Hansen Diff 0.763 0.957 0.052

No. of Instruments 38 38 29

Table 5 notes: Female employment and male employment are transformed using the inverse hyperbolic sine method to correct for

the skewness of their distribution (see Bellemare & Wichman (2020)). Independent variables are one-period lagged. Estimates

are based on fixed effects models of equation in (1). Robotization is measured as the inverse hyperbolic sine transformation of

change in robots per employees, see (Bellemare & Wichman, 2020). Driscoll-Kraay standard errors in parentheses (Columns 1,

2, 5 and 6). ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.

Figure 6: Marginal Effects of Robotization in Female Employment (diff-GMM)
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7 Conclusions

The automation of work profoundly transforms the set of activities that can be performed by robots and

humans, and thus, alter the extent to which machines are substitutes or complementarities of human labor.

Against this backdrop, women and men play different roles in the labor market as well as in the household

production, as they concentrate in different occupations and industries, accrue different educational paths

and skills, and participate in the labor market at different rates. On top of this, cultural norms and gender

stereotypes affect the economic role of women and men in sharply different forms, that drive gender wage

gaps and usually crowd women labor-intensive sectors and low-skills occupations. This article makes the

case of that technological change, specifically in the form of robot penetration, is not gender-neutral and

that it will unleash differential employment effects for women and men. Further, I argue that the role of

robotization in the gender distribution of sectoral employment might hinge upon the overall presence of

women in the workforce, as a proxy of cultural values and prescriptions of gender economic roles.

This paper brought together two literatures that have evolved on parallel tracks: the literature on labor

market effects of automation and the literature on the link between technological upgrading and the defem-

inization of the manufacturing. Although some attempts are welcome gender differences in labor market

outcomes of automation (Aksoy et al., 2021; Ge & Zhou, 2020; Domini et al., 2022), they are mostly fo-

cused on gender wage gaps, rather than the distribution of women and men across sectors. On the side of

gender segregation in manufacturing literature (Kucera & Tejani, 2014; Seguino & Braunstein, 2019; Tejani

& Kucera, 2021), they usually consider technological upgrading as means of productivity gains, rather than

conceptualizing robot penetration as a form of technological change.

The current paper addressed the question of whether and how the adoption of industrial robots impacts on

the share of women in manufacturing industries. The paper built a panel database consisting of 11 indus-

tries from 14 countries during 1993-2015 to be able to identify the role of industrial robots in female shares.

I specified dynamic panel data models, which include previous levels of female shares in industries, and

estimated them using an instrumental variables approach that takes into consideration the endogeneity bias

of the measure of robot penetration. To the best of my knowledge, this is the first attempt to consider how

previous realizations of female shares might influence current gender distribution across industries within

the manufacturing, while simultaneously, circumventing the endogeneity issues that robotization might im-

pose on the econometric analysis.

The results point to a positive relationship between industrial robots and the share of women in manufactur-

ing employment. Nonetheless, the estimates show a significant interaction between robotization and female
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labor force participation. Hence, the robotization-female share link is contingent upon the general partic-

ipation of women in the workforce. The marginal effects of robotization in the share of women reduce as

female labor force increases. Thus, a higher presence of women in the overall economy, the lower the posi-

tive effects of robotization in the share of women in manufacturing industries. The main results are robust

to different estimation techniques and partitions of the sample, dropping influential observations such as

Japan, or highly gender dominated sectors, such as textiles or automotive and electronics. Using female and

male employment as the dependent variables, the results suggest that there is a small positive association

between robotization and women in manufacturing, while there is no significant link to male employment.

The main findings of the paper are that industrial robots are linked to an increasing presence of women in

manufacturing, but this effect fades away as female labor force participation increases. One interpretation

of these findings is that the use of industrial robots in the production function might lower the need for phys-

ically demanding skills. This type of technological change is linked to an increasing impact in female-labor

demand in the reference literature (Juhn et al., 2014; Rendall, 2013, 2017). Nonetheless, this positive effect

of robotization in female-labor demand might be limited by the firm’s preferences for male workers during

industrial upgrading (Kucera & Tejani, 2014; Seguino & Braunstein, 2019). Gender stereotypes and gender

differential skills (whether actual or perceived), along with unbalance gender distribution of unpaid house-

hold production, might reduce the potential gender equalizing effects of technological change. Relatedly,

technological change is contextualized in the development process and structural change, where the increas-

ing service economy crucially absorbs female employment and is linked to the rise in female labor force

participation (Ngai & Petrongolo, 2017; Dinkelman & Ngai, 2022; Petrongolo & Ronchi, 2020). Thus,

technological upgrading might benefit the entrance of women in manufacturing industries under certain cir-

cumstances, such as relatively low labor force participation of women or at relatively low levels of economic

development. The significant relationship between robot penetration and female employment might suggest

that robotization has a closer link to tasks performed by women than those performed by men.

This paper contributed to improve our understanding of the gender differential effects of robotization. As

of its policy implications, the paper points at the role of development (measured by means of GDP per

capita), and gender norms (measured by means of female labor force participation), to crucially shape the

implications of technological upgrading in the gender distribution of manufacturing employment. Thus, and

following the conclusions in Seguino & Braunstein (2019), countervailing forces in the process of techno-

logical upgrading can result in new forms of gender inequality in the context of automation and the future of

work, even in light of improving other indicators, such as the participation of women in the paid workforce.

Future research to complement this paper should look at the occupational gender composition of manu-
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facturing industries, together with the sectoral perspective taken in this paper. Due to the lack of data on

the gender distribution across occupations within manufacturing industries, this paper was silent on the ef-

fect that technological upgrading can have on the vertical segregation of women and men in the process

of automation. Another replication of the present analysis might use information on the price of robots

or a measure of the quality of industrial robots, instead of the number of industrial robots, to inform on

the actual capacity of robots to replace tasks previously performed by humans. Finally, another interesting

line of research to complement this article would consider the gender effects of robotization in informal

employment and non-market economic activities such as household production, which can be specifically

relevant for developing economies.
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30



für Nationalökonomie und Statistik.

Klump, R., Jurkat, A., & Schneider, F. (2021). Tracking the rise of robots: A survey of the ifr database and

its applications.

Kucera, D., & Milberg, W. (2000). Gender segregation and gender bias in manufacturing trade expansion:

revisiting the “wood asymmetry”. World Development, 28(7), 1191–1210.

Kucera, D., & Tejani, S. (2014). Feminization, defeminization, and structural change in manufacturing.

World Development, 64, 569–582.

M Affendy, A., Sim Yee, L., & Satoru, M. (2010). Commodity-industry classificationproxy: A correspon-

dence table between sitc revision 2 and isic revision 3.

Ngai, L. R., & Petrongolo, B. (2017). Gender gaps and the rise of the service economy. American Economic

Journal: Macroeconomics, 9(4), 1–44.

Nickell, S. (1981). Biases in dynamic models with fixed effects. Econometrica: Journal of the econometric

society, 1417–1426.

Petrongolo, B., & Ronchi, M. (2020). Gender gaps and the structure of local labor markets. Labour

Economics, 64, 101819.

Reijnders, L. S., & de Vries, G. J. (2018). Technology, offshoring and the rise of non-routine jobs. Journal

of Development Economics, 135, 412–432.

Rendall, M. (2013). Structural change in developing countries: has it decreased gender inequality? World

Development, 45, 1–16.

Rendall, M. (2017). Brain versus brawn: the realization of women’s comparative advantage. University of

Zurich, Institute for Empirical Research in Economics, Working Paper(491).

Rodrik, D. (2013). Unconditional convergence in manufacturing. The Quarterly Journal of Economics,

128(1), 165–204.

Rodrik, D. (2016). Premature deindustrialization. Journal of economic growth, 21(1), 1–33.

31



Roodman, D. (2009). How to do xtabond2: An introduction to difference and system gmm in stata. The

stata journal, 9(1), 86–136.

Seguino, S., & Braunstein, E. (2019). The costs of exclusion: Gender job segregation, structural change

and the labour share of income. Development and Change, 50(4), 976–1008.

Siminski, P., & Yetsenga, R. (2022). Specialization, comparative advantage, and the sexual division of

labor. Journal of Labor Economics, 40(4), 851–887.

Tejani, S., & Kucera, D. (2021). Defeminization, structural transformation and technological upgrading in

manufacturing. Development and Change, 52(3), 533–573.

Tejani, S., & Milberg, W. (2016). Global defeminization? industrial upgrading and manufacturing employ-

ment in developing countries. Feminist Economics, 22(2), 24–54.

Uberti, L. J., & Douarin, E. (2023). The feminisation u, cultural norms, and the plough. Journal of

Population Economics, 36(1), 5–35.

32



Appendix

Figure A1: Evolution of Industrial Robots and Female Share by Industry
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Figure A2: Evolution of Industrial Robots and Female Share by Country

Figure A3: Female Labor Force Participation and Female Share in Manufacturing Industries (country avrg.)
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Table A1: Sample Countries and Key Variables

Country Female share Industrial Robots FLFP

Bulgaria 0.41 3.04 59.62

Croatia 0.35 2.33 57.54

India 0.08 127.71 30.22

Indonesia 0.36 39.85 50.98

Japan 0.31 31976.70 60.41

Kuwait 0.03 0.03 47.98

Lithuania 0.41 0.72 67.95

Malaysia 0.34 64.05 46.99

Malta 0.22 0.26 35.99

Mexico 0.33 140.37 46.86

Morocco 0.26 2.81 26.54

Philippines 0.37 12.04 49.53

Turkey 0.17 107.85 29.62

Vietnam 0.45 34.27 77.83
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Table A2: Sources of Data

Variable Description Source

Female share Women in industry i to employment in industry i UNIDO

GFKF Gross fixed capital formation (in million dollars) UNIDO

Employment share Employment in industry i, c to total manufacturing employment in country c UNIDO

Industrial robots (stock) Number of industrial robots employed in industry i IFR

Installations New robot installations in industry i IFR

Share of exports Industry exports to total exports in in industry i COMTRADE

FLFP Labor force participation rate, % of female population ages 15+ ILO

GDP pc growth rate Annual growth rate of per capita Gross Domestic Product World Bank

GDP pc level Per capita Gross Domestic Product World Bank

Structural change Industrial employment as a share of total employment (%) World Bank

FDI Foreign direct investment, net inflows (in million dollars) World Bank

Tariffs Tariff rate, applied, weighted mean, manufactured products in percentage terms World Bank

GPI Gender parity index (GPI) of literacy rate of adults World Bank
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Alternative measures of Robotization (A)
Table A3: Robots and Women in Manufacturing: Baseline models Appendix

Dependent variable: Industry female share

(1) (2) (3) (4) (5)

All All All All No Japan

Robots per 10,000 workers 0.047∗∗∗ 0.475∗∗∗ 0.084 0.107∗ 0.241∗∗

(0.005) (0.108) (0.061) (0.060) (0.097)

FLFP 0.007∗∗ 0.004 -0.006∗∗∗ -0.018∗∗∗ -0.003∗∗∗

(0.003) (0.002) (0.001) (0.001) (0.001)

Robots per 10,000 workers * FLFP -0.007∗∗∗ -0.001 -0.001 -0.004∗∗

(0.002) (0.001) (0.001) (0.002)

No. of Observations 1798 1798 1798 1648 1486

No. of Groups 151 151 151 151 140

Within R-squared 0.010 0.030 0.194 0.182 0.182

Year fixed effects no yes yes yes yes

Country-year fixed effects no no yes yes yes

Industry-level controls no no yes yes yes

Country-level controls no no no yes yes

Japan included yes yes yes yes no

Table A3 notes: Independent variables are one-period lagged. Estimates are based on fixed effects models of equa-

tion in (1). Robotization is measured as number of industrial robots per 10,000 employees. Driscoll-Kraay standard errors in

parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.
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Table A4: Dropping one industry at a time

Dep. variable: Industry female share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

Fem sharet−1 0.731∗∗∗ 0.723∗∗∗ 0.740∗∗∗ 0.731∗∗∗ 0.726∗∗∗ 0.741∗∗∗ 0.741∗∗∗ 0.760∗∗∗ 0.648∗∗∗ 0.731∗∗∗ 0.731∗∗∗

(0.070) (0.066) (0.062) (0.067) (0.065) (0.063) (0.064) (0.066) (0.073) (0.064) (0.064)

Robotization 2.457∗∗ 2.585∗∗∗ 2.436∗∗∗ 2.439∗∗∗ 2.490∗∗∗ 2.307∗∗∗ 2.368∗∗∗ 2.436∗∗∗ 2.866 2.465∗∗∗ 2.465∗∗∗

(0.902) (0.754) (0.707) (0.746) (0.740) (0.676) (0.656) (0.785) (2.385) (0.719) (0.719)

FLFP 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001 0.001∗∗∗ 0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Robotization*FLFP -0.035∗∗ -0.035∗∗∗ -0.033∗∗∗ -0.034∗∗ -0.034∗∗ -0.032∗∗ -0.033∗∗∗ -0.034∗∗ -0.042 -0.034∗∗∗ -0.034∗∗∗

(0.014) (0.012) (0.012) (0.012) (0.012) (0.011) (0.011) (0.013) (0.041) (0.012) (0.012)

No. of Observations 915 915 915 915 915 920 915 915 915 1030 1030

R2

No. of Groups 80 80 80 80 80 80 80 80 80 90 90

Within R-squared 0.486 0.434 0.475 0.469 0.465 0.496 0.478 0.479 0.457 0.469 0.469

Year fixed effects yes yes yes yes yes yes yes yes yes yes yes

Country-year fixed effects yes yes yes yes yes yes yes yes yes yes yes

Industry-level controls yes yes yes yes yes yes yes yes yes yes yes

Country-level controls yes yes yes yes yes yes yes yes yes yes yes

Table A4 notes: Columns 1-11 drop respectively the industries: ”Food, beverages Tobacco products” , ”Textiles”, ”Wood furniture”, ”Paper” , ”Plastic and

chemical products” , ”Glass, ceramics, minerals”, ”Metal” , ”Electrical/electronics”, ”Automotive” , ”Other transport equipment.” Independent variables are one-period

lagged. Estimates are based on fixed effects models of equation in (1). Robotization is measured as the IHS transformation on the share of robots (see Bellemare & Wich-

man (2020)). Driscoll-Kraay standard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.
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Table A5: Dropping one country at a time

Dep. variable Industry female share

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

Fem sharet−1 0.750∗∗∗ 0.731∗∗∗ 0.726∗∗∗ 0.761∗∗∗ 0.731∗∗∗ 0.735∗∗∗ 0.722∗∗∗ 0.754∗∗∗ 0.731∗∗∗ 0.715∗∗∗ 0.664∗∗∗ 0.731∗∗∗ 0.723∗∗∗

(0.073) (0.064) (0.063) (0.057) (0.064) (0.066) (0.065) (0.058) (0.064) (0.070) (0.079) (0.064) (0.069)

Robotization 2.394∗∗∗ 2.465∗∗∗ 2.166∗∗∗ 2.221∗∗∗ 2.465∗∗∗ 2.391∗∗∗ 2.657∗∗∗ 2.594∗∗∗ 2.465∗∗∗ 2.538∗∗∗ 2.742∗∗∗ 2.465∗∗∗ 2.904∗∗

(0.690) (0.719) (0.648) (0.685) (0.719) (0.743) (0.839) (0.710) (0.719) (0.792) (0.538) (0.719) (1.212)

FLFP 0.001 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗ 0.001∗∗∗ 0.001∗∗∗ 0.002∗∗∗

(0.001) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Robotization*FLFP -0.033∗∗∗ -0.034∗∗∗ -0.029∗∗ -0.032∗∗∗ -0.034∗∗∗ -0.033∗∗ -0.037∗∗ -0.036∗∗∗ -0.034∗∗∗ -0.035∗∗ -0.038∗∗∗ -0.034∗∗∗ -0.041∗∗

(0.011) (0.012) (0.011) (0.011) (0.012) (0.012) (0.014) (0.012) (0.012) (0.013) (0.009) (0.012) (0.018)

No. of Observations 931 1030 877 927 1030 958 931 904 1030 985 967 1030 895

No. of Groups 81 90 81 81 90 81 81 81 90 81 81 90 81

Within R-squared 0.566 0.469 0.493 0.511 0.469 0.471 0.454 0.467 0.469 0.438 0.390 0.469 0.468

Year fixed effects yes yes yes yes yes yes yes yes yes yes yes

Country-year fixed effects yes yes yes yes yes yes yes yes yes yes yes

Industry-level controls yes yes yes yes yes yes yes yes yes yes yes

Country-level controls yes yes yes yes yes yes yes yes yes yes yes

Table A5 notes: Columns 1-13 drop respectively the countries: Bulgaria, Croatia ,India,Indonesia, Kuwait, Lithuania , Malaysia, ,Malta, Mexico, Morocco, ,

Philippines, Turkey, Vietnam . Independent variables are one-period lagged. Estimates are based on fixed effects models of equation in (1). Robotization is measured as the

IHS transformation on the share of robots (see Bellemare & Wichman (2020)). Driscoll-Kraay standard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own

calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.
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Supplementary materials

S1. Database construction and data cleaning

This database is built upon three main data sources at country-industry level of disaggregation, namely the

United Nations Industrial Development Organization (UNIDO) INDSTAT 2 2021 at 2-digit level Indus-

trial Statistics International Classification (ISIC) revision 3, the International Federation of Robotics (IFR)

at ISIC revision 4, the United Nations Statistical Division (COMTRADE) Standard International Trade

Classification (SITC) revision 2. These country-industry cells are merged with two other data sources at

country-level information collected from the World Bank and the International Labour Organization (ILO).

The countries included in the sample are Bulgaria, Croatia, India, Indonesia, Japan, Kuwait, Lithuania,

Malaysia, Malta, Mexico, Morocco, Philippines, Turkey and Vietnam. The sample selection is influenced

by the demanding data requirements of the industry level of disaggregation of manufacturing industries, and

this issue is further discussed below in the data limitations subsection.

The variables collected from the UNIDO INDSTAT database provide statistics on 23 ISIC 2-digit level man-

ufacturing industries by country and year, such as output, value added, gross fixed capital formation, em-

ployees, female employees, wages and salaries, and number of establishments. As noted in Rodrik (2013),

UNIDO information on industrial statistics database is derived largely from industrial surveys which ex-

clude micro-enterprises and informal firms. Thus, the analysis provided here might not be universally valid

across all types of manufacturing activities, but to the organized, formal parts of manufacturing. As of data

on automation, the IFR database is the best accessible source of data on robots (Ge & Zhou, 2020), and it

is widely used in the reference literature on automation (Graetz & Michaels, 2018; Acemoglu & Restrepo,

2020; Aksoy et al., 2021). The IFR provides data on the stock of robots and new robot installations by

industry, country, and year, starting from 1993. This article primarily relies on IFR data on industrial robots

(stock) to measure the extent of automation by country and industry during the period at scrutiny. Nonethe-

less, in alternative models I also employ the number of new installations as a sensitivity check. A crucial

feature of the IFR data for this paper is that IFR provides information at a higher level of disaggregation for

manufacturing than other sectors. The COMTRADE database provides information on raw trade data on

goods which I merge at industry level in the database constructed for the econometric analysis below. To

maintain consistency in the classification of industries across these three data sources, namely UNIDO, IFR

and COMTRADE, I combine the 23 ISIC 2-digit level industries from UNIDO into 11 industries.16.

16For the harmonization of the industrial classification, I draw on Klump et al. (2021) and M Affendy et al. (2010)

together with Eurostat RAMON correspondence tables to accurately combine the industrial classification https://
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The high level of data disaggregation employed in this paper allows to uncover potential gender differential

effects of robotization across industries within the manufacturing. Nonetheless, this comes at the cost of

country coverage and time frame. The UNIDO data shows jumps in the data, as well as discrepancies with

other data sources on total employment level in manufacturing (e.g. Economic Transformation Database

constructed by G. De Vries et al. (2021) or the World Bank data). Likewise, the IFR data covers only

a subset of countries, and it is not free from limitations (see Klump et al. (2021)). Linking UNIDO and

IFR information, together with the COMTRADE data to account for industrial-level trade flows, implied

strong limitations in the number of countries for which data is available. The selection of countries here

provide was based on data availability, for which all country-industry observations fulfil the rule of showing

consistent time series of at least 5 years in a row.

Table S1: Data Availability by Country

Country Time Coverage Missing years Number of Years

Bulgaria 1993-2015 1995 22

Croatia 1993-2015 23

India 1993-2015 23

Indonesia 1993-2015 23

Japan 1994-2010 16

Kuwait 2006-2015 20

Lithuania 1996-2015 2000, 01, 02 27

Malaysia 1993-2015 1998, 11, 13 20

Malta 1993-2008 16

Mexico 2009-2015 7

Morocco 1993-2010 1999, 06 16

Philippines 1993-2015 2000, 02, 04, 07, 11 18

Turkey 1993-2008 2002 15

Viet Nam 1998-2015 1999, 00 16

ec.europa.eu/eurostat/ramon/relations/index.cfm?TargetUrl=LST REL&StrLanguageCode=

EN&IntCurrentPage=4 last access 7/02/2023
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Figure S1: Evolution of Industrial Robots and Female and Male Employment by Industry

S2. Alternative measures of robot penetration (S)

S2.1 Distance to the World Robotization Frontier

The measure of robot penetration used in the manuscript was the IHS transformation of the annual change

in the stock of industrial robots relative to the level of industry employment in 1980. As an extension of

this model, I adapt the concept of Distance to the World Technological Frontier provided in (Caselli et al.,

2006) and (Acemoglu et al., 2006) to the context of robot perpetration. To pay tribute to its first proponents,

I call this measure the Distance to the World Robotization Frontier (WRF). The WRF is given by Eq.S1:

Distanceict = 1− IndustrialRobotsict
maxc′IndustrialRobotsit

(S1)

where IndustrialRobotsict are the number of industrial robots in an industry i, country c and year t and

maxc′IndustrialRobotsit is the maximum number of industrial robots within an industry across countries.

This measure is therefore the distance between each country-industry cell and the country that sets the robo-

tization frontier for each industry, and thus, the higher the distance, the lower the robotization level of that

country-industry cell.
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Table S2 uses the shares of country-industry robots to the total of industrial robots per industry in

the IFR database and the Distance to the WRT as two alternative extensions of the measure of robotization

in the baseline model of the manuscript (Table 2). Columns 1 and 2 consider the share of robots to the

total number of industrial robots in the IFR database, and Columns 3 and 4 use the distance to the WRT.

When Japan is dropped from the analysis, I also drop it from the computation of the total of industrial

robots in IFR database and the world robotization frontier to compute the distance measure. The results

provide further evidence to the main findings of the paper. Increasing robotization is associated with higher

share of women in manufacturing employment, and this effect hinge upon the level of female labor force

participation. When using the distance to the WRF, higher distance to the WRF is associated with a negative

effect in female shares in manufacturing industries, and this depends positively on the level of female labor

force participation. Therefore, these models point to the same relationship between robotization and women

in manufacturing. robot penetration favors women in manufacturing, but this effect depends on the level of

women that participate in the workforce. The higher the women in the workforce, the lower the positive

association between robotization and women in manufacturing industries.

Table S2: Robots and Women in Manufacturing: Distance to the World Robotization Frontier (WRT)

Dependent variable: Industry female share

(1) (2) (3) (4)

Share robots to total IFR Distance to WRF

All No Japan All No Japan

Share IFR robots 0.657∗∗∗ 2.613∗∗∗

(0.059) (0.836)

FLFP 0.003∗∗∗ 0.002∗∗∗ 0.002∗∗∗ -0.003

(0.000) (0.000) (0.000) (0.002)

Share IFR robots*FLFP -0.011∗∗∗ -0.060∗∗∗

(0.001) (0.019)

Distance WRF -0.002∗∗ -0.513∗∗∗

(0.001) (0.165)

Distance WRF*FLFP 0.000∗ 0.012∗∗∗

(0.000) (0.003)

No. of Observations 1,648 1,486 1,648 1,486

No. of Groups 151 140 151 140

Within R-squared 0.180 0.173 0.179 0.173

Year fixed effects yes yes yes yes

Country-year fixed effects yes yes yes yes
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Industry-level controls yes yes yes yes

Country-level controls yes yes yes yes

Japan included yes no yes no

Table S2 notes: Independent variables are one-period lagged. Estimates are based on fixed effects models of equation

in (1). Robotization is measured as share of robots to total IFR database (Columns 1 and 2) and Distance to the World Robotiza-

tion Frontier (Columns 3 and 4). Driscoll-Kraay standard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own

calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.

IFR total database sample of countries: Argentina , Australia , Austria , Belarus , Belgium , Brazil

, Bulgaria , Canada , Chile , China , Colombia , Croatia , Czech Republic Denmark , Egypt , Estonia ,

Finland , France , Germany , Greece , Hong Kong Hungary , Iceland , India , Indonesia , Iran , Ireland ,

Israel , Italy , Japan , Kuwait , Latvia , Lithuania , Macau , Malaysia , Malta , Mexico , Moldova , Morocco

, Netherlands , New Zealand North Korea Norway , Oman , Pakistan , Peru , Philippines , Poland , Portugal

, Puerto Rico Romania , Russian Federation Saudi Arabia Serbia , Singapore , Slovakia , Slovenia , South

Africa Spain , Sweden , Switzerland , Thailand , Tunisia , Turkey , Ukraine , United Arab United Kingdom

United States Uzbekistan , Venezuela , Vietnam .
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S2.2. Installations

Figure S2: Installations and Female Share by Industry

Table S3: Robots and Women in Manufacturing: Baseline models IHS Installations share

Dependent variable: Industry female share

(1) (2) (3) (4) (5)

All All All All No Japan

Robotization (installations) 1.414 12.363∗∗∗ 9.628∗∗∗ 12.023∗∗∗ 12.327∗∗

(1.611) (3.265) (2.802) (4.218) (4.451)

FLFP 0.001∗∗ 0.001∗ 0.004∗∗∗ 0.001∗∗∗ 0.002∗∗∗

(0.001) (0.001) (0.000) (0.000) (0.000)

Robotization (installations) * FLFP -0.211∗∗∗ -0.139∗∗ -0.178∗∗ -0.180∗

(0.055) (0.051) (0.069) (0.102)

No. of Observations 1147 1147 1147 1030 895

No. of Groups 90 90 90 90 81

Within R-squared 0.006 0.032 0.268 0.232 0.233

Year fixed effects no yes yes yes yes

Country-year fixed effects no no yes yes yes

Industry-level controls no no yes yes yes
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Country-level controls no no no yes yes

Japan included yes yes yes yes no

Table S3 notes: Independent variables are one-period lagged. Estimates are based on fixed effects models of equation

in (1). Robotization is measured as the IHS transformation on the share of installations (see Bellemare & Wichman (2020)).

Driscoll-Kraay standard errors in parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own calculations based on UNIDO,

IFR, COMTRADE, WDI and ILO.

Table S4: Robots and Women in Manufacturing: Baseline models Installations per 10,000 workers

Dependent variable: Industry female share

(1) (2) (3) (4) (5)

All All All All No Japan

Installations per 10,000 workers 0.011 0.443∗∗ 0.198∗ 0.189 0.343

(0.008) (0.189) (0.114) (0.126) (0.221)

FLFP 0.006∗∗ 0.004 -0.009∗∗∗ -0.015∗∗∗ -0.011∗∗∗

(0.003) (0.003) (0.001) (0.001) (0.001)

Installations per 10,000 workers * FLFP -0.007∗∗ -0.003 -0.003 -0.006

(0.003) (0.002) (0.002) (0.004)

Year fixed effects no yes yes yes yes

Country-year fixed effects no no yes yes yes

Industry-level controls no no yes yes yes

Country-level controls no no no yes yes

Japan included yes yes yes yes no

N 1798 1798 1798 1648 1486

No. of Groups 151.000 151.000 151.000 151.000 140

log-likelihood

Within R-squared 0.005 0.025 0.192 0.180 0.180

Table S4 notes: Independent variables are one-period lagged. Estimates are based on fixed effects models of equation

in (1). Robotization is measured as number of industrial installations per 10,000 employees. Driscoll-Kraay standard errors in

parentheses. ∗ p < .1, ∗∗ p < .05, ∗∗∗ p < .01 Sources: own calculations based on UNIDO, IFR, COMTRADE, WDI and ILO.
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