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Abstract

This paper studies the optimal timing of investment in innovative tech-
nology by health care providers competing for patients, in a real option
framework. The innovative technology provides a better health outcome,
thus attracting a larger number of patients. On the other hand, at the
early stages of innovation it is assumed to involve a larger degree of un-
certainty and higher operational costs. Since further development of the
technology is expected to improve efficiency over time, each provider faces
a trade-off between gaining a competitive advantage by investing first, and
fully exploiting the option to delay investment under uncertainty. The
model is set up so that the role of the payment system on investment
decisions may be investigated. This turns out not to be always intuitive.
In particular, it is showed that a more generous scheme does not always
induce to anticipate investment. By comparing the competitive solution
with the social optimal timing, some policy implications are finally dis-
cussed.

1 Introduction

After an increasing number of countries have reformed health care systems with
the aim of increasing efficiency, the issue of quality of the services provided
has been among the most debated. This concern arises from the observation
that the tendency underlying most reforms has been to separate the role of the
provider from that of the purchaser of the services, and to shift from mainly
cost-based to mainly prospective reimbursement systems. A first approach to
the issue of investment in quality of the health services is focused on the rela-
tionship specific characteristics that may lead to the ‘hold-up’ problem1. The

‡This paper is an extract from the preliminary version of my Phd thesis (Supervisors: R.
Levaggi and M. Moretto).

§Graduate School in the Economics and Finance of Public Administration (DEFAP); Uni-
versità Cattolica, Milano, Università di Milano Bicocca, Università degli Studi di Milano.
E-mail address: paolo.pertile@unicatt.it.

1The idea was first developed by Klein et al. (1978) and Williamson (1975).
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prediction from this literature is of inefficiently low investments in quality.
On the other hand, other contributions have emphasized the role of the incen-
tives to invest in quality for providers that are no longer monopolists (Weisbrod,
1991) and compete for patients in a prospective payment system. The pressure
may be strong because patients, unlike most consumers, rarely pay out of pocket
the full cost of the services they receive. The prediction in this case is reversed,
the tendency being to over-investment in quality.
Such sharp differences in the predictions from alternative models may seem mis-
leading. In fact, the two approaches make somehow extreme assumptions on
the competitive structure of the market for health care services. Whereas in
the ‘hold-up’ case the attention is restricted to the contractual relationship, in
models where the incentive to over-investment is emphasized the competition
among providers is the leading force for the investment decisions, because pa-
tients can observe quality of services and decide accordingly, without paying out
of pocket for higher quality levels. That patients can observe quality of medical
services overall is hard to claim, and it is also clear that health care providers
are to some extent subject to competitive pressures. However, the insights of
both these approaches may be relevant if quality is seen as a multidimensional
attribute (Chalkley and Malcomson, 1998), and the different dimensions differ
in terms of observability, thus creating different degrees of competitive pres-
sures.
A further source of incentives for providers is the payment system. The tendency
in recent years has been to move from cost reimbursement toward prospective
payment. An interesting issue then, is how payment systems should be de-
signed to create appropriate incentives for hospitals that face also competitive
pressures2. The common belief is that more generous payments to the provider
create an incentive toward the adoption of new technologies Cutler and McClel-
lan (1996).
The aim of the present paper is to concentrate on the incentives to invest in
the specific dimension of quality that is connected to technology, which is prob-
ably among the main determinants of the health outcome. The opinion that
technological innovation boosts health care costs is widespread and it has also
been tested empirically3. The analysis in the paper best fits the issue of invest-
ment in equipment. The distinguishing characteristic of this kind of investment
in medical technology when compared with other dimensions of quality is that
it is a long term irreversible decision, which has typically to be taken under
uncertainty. Therefore, the intertemporal dimension of the decision becomes a
key issue. Although the need to extend the anaysis of investment in medical
technologies to account for the intertemporal and competitive dimension has
been pointed out (Chernew et al., 2001) the issue has almost invariably been
addressed in static settings.
Bos and De Fraja (2002) set up a model where the investment in non-contractible
quality is irreversible. They do not model competition explicitly, but they allow

2See, for example, Ellis (1998).
3Cutler and McClellan (1996) for example, find evidence of the role of the diffusion of new

technologies in the increase in cost.
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the purchaser to invest in outside capacity. In this context, although the in-
vestment is relationship specific, investments by the purchaser and the provider
are substitutes, rather than complements, as it is typically the case in hold-up
models, and the outcome is over-investment instead of under-investment.
Levaggi and Moretto (2004) study the decision to invest in innovative technol-
ogy with uncertain returns, in a genuinely dynamic setting. Their analysis is
developed within a real options framework, following the insight by Palmer and
Smith (2000) on the opportunity to extend the evaluation of health care tech-
nologies to take the value of the options possibly embodied in the investment
project into account. They show that long-term contracts are most effective in
creating incentives for a representative provider to invest in innovative technolo-
gies.
As it has been discussed above, competitive pressures may play a key role in
investment decisions as long as these have an impact on the strategic position.
This will be the case, for instance, when the ability to attract patients is en-
hanced. In the present paper, as in Levaggi and Moretto (2004) a real option
approach is adopted, but the model is extended to allow for two providers com-
peting for patients. The investment decision is assumed discrete, so that the
focus is on the timing rather than on the level of investment. In real life, the
decision maker may actually face situations where the question is whether, and
in case when, to invest in an innovative technology rather than how much to
invest. The model is mainly based on that part of the literature on real options
that investigates the role of competition in influencing these decisions, through
game theoretic models4. The idea behind the real options approach is that the
‘naive’ approach to capital budgeting under uncertainty based on the expected
Net Present Value (NPV) fails to take into account the opportunity to adjust
investment decisions over time, as uncertainty is resolved. In other words, the
NPV approach implicitly assumes that the investment decision is either ‘now
or never’, or not irreversible. More recently, it has been underlined that the
optimal investment decision in this perspective may not be only dependent on
the characteristics of uncertainty, but also on strategic interactions. This is
the case, for instance, when an option is shared rather than private, so that if
the competitor exercises it first the option is no longer available, or its value
reduced.
The objective of the paper is to investigate the investment decision in innovative
health technology studying the interaction between option values and competi-
tive forces, whose role in the investment decision process has been underlined in
the literature referred to above. This has actually an impact on the equilibrium
outcomes, that are of two types. In the first case, the advantage of becoming
the leader is large enough that both competitors aim to preempt the other and
end up in a sequential equilibrium. In the second case, investing simultaneously
is more valuable and investment by both will be delayed relative to the first
case. The payment system affects the timing of adoption both within each class
of equilibria, and by determining whether the equilibrium will be sequential or

4Huisman (2001) provides a comprehensive overview.
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simultaneous. In particular, it is showed that when this is taken into account,
more generous payment systems do not necessarily induce providers to antici-
pate investment.
In the model, competitive investment may happen both later and earlier than
the social optimum. What the case will be depends on several parameter val-
ues, including the propensity by patients to incur additional costs to seek better
technology. If the regulator may distinguish among treatments in this respect,
then the payment system may be adapted in order to induce a timing of invest-
ment with similar characteristics to the social optimal timing.
In the first section, the competitive model is introduced. The optimal strate-
gies and the equilibrium outcomes of the game are presented in Section 3. The
following section investigates the role of the payment scheme in the investment
decision. In Section 5 the timing of investment corresponding to the equilib-
rium outcome under competition is compared with the social optimum. This
provides the basis for the discussion of some mainly qualitative policy implica-
tions. In particular, the focus is on what characteristics of the payment scheme
may reduce the distortions that the competitive pressures induce.

2 The Model

2.1 Patients

Let two hospitals competing for patients be placed at the extremes of a line
of unit length (Ellis, 1998; Beitia, 2003). The number of people that require
the treatment is assumed fixed and normalized to one. Fully ensured patients
are free to decide where to seek care. Let d be the distance from the origin
and 1/δ the unitary cost of transport. The latter parameter may be more
usefully interpreted as a (inverse) measure of elasticity of demand that may
vary considerably, depending on the type of treatment needed. For example,
this may be close to infinity for some emergencies. The benefit the patient
receives from treatment depends on the technology available in the hospital were
she is treated. This is described as discrete, the alternative being between basic
technology, providing benefit B0 and innovative technology, with associated
benefit B1, such that B1 > B0. The level of benefit is assumed independent of
the number of patients treated by each provider.
If technology is observable (‘selected referral’ hypothesis), fully ensured patients
maximize the benefits from treatment, net of transportation costs. As it has
been discussed above, the assumptions that are made on observability of quality
are crucial in determining the level of investment. Since mechanisms of referral
are operating in most systems, it seems natural in this context to assume that
technology, unlike other dimensions of quality, is observable. Equating the net
benefit of seeking care from the two hospitals, the location of the marginal
patient is obtained:

d∗ =
1
2

+
δ

2
(Bi −Bj) = xij (1)
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where, subscripts i and j denote respectively the technology adopted by the
provider placed in the origin and at the other extreme, which may be either basic
(i, j = 0) or innovative (i, j = 1). Given the assumptions on the distribution of
the patients along the line, this is also the number of patients treated by the
provider whose technology is i, when the competitor uses technology j. Since
the technology can only be basic or innovative, there are only four possible
levels of demand for each provider. Assuming that providers are symmetric
with respect to any aspect other than technology, each of them faces one of the
following levels of demand:

x00 = x11 =
1
2

x10 = min

{
1
2

+
δ

2
(B1 −B0) , 1

}
(2)

x01 = max

{
1
2
− δ

2
(B1 −B0) , 0

}
It is assumed throughout that also the basic technology ensures for all patients
net benefits that exceed reservation utility.

2.2 Providers

In order to keep the analysis as simple as possible, providers are assumed to be
pure profit maximizers:

Vij = xij [p + (r − 1)ci] (3)

where, p and r indicate respectively the price and cost-reimbursement compo-
nent of the payment scheme (Ellis and McGuire, 1986). The price is set indepen-
dently of the technology employed, thus reflecting inability or reluctance of the
purchaser to discriminate different technological levels as long as the treatment
is perceived to be the same despite the difference in the technological content.
For the sake of simplicity, the possibility that the benefits enjoyed by patients
directly enter in the providers’ objective function is ignored in the basic model5.
The main implications of adding a pure benefit component to the hospitals’ pay-
off functions will be discussed in Section 5.
The key variable in the model is the marginal cost, which is assumed indepen-
dent of the number of patients treated, but technology dependent. In particular,
it is assumed in the baseline model that under the basic technology hospitals
face a marginal cost that is also time invariant (c0). The marginal cost of
the innovative technology, instead, is assumed stochastic, following a geometric
brownian motion:

dc(t) = µc(t)dt + σc(t)dw(t) (4)

5This assumption is often made in the health economics literature. It is also generally
agreed that the impact on conclusions is usually minor. See for example (Danzon, 1982;
Dranove and White, 1994).
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where, µ < 0 is the drift component and dw is the increment of a Wiener process.
Thus dw(t) is distributed according to a normal distribution with mean zero and
variance dt.
The assumption that the marginal cost is constant across time for the old tech-
nology, whereas it varies according to the brownian motion for the innovative
one is connected to the observation that the degree of uncertainty tends to be
reduced as innovative technologies spread. In particular, it looks reasonable
that further research aimed at improving performances is most likely to be suc-
cessfully carried out at the early stages of the development of an innovative
technology. This is reflected in the brownian motion with negative drift, where
the absolute value of the rate of decline of c(t) decreases with time. Underlying
is the assumption that the alternative technologies employ, at least to some ex-
tent, different inputs.
For the sake of simplicity it is also assumed throughout that:

c(0) >

(
β

β − 1

)(
ρ− µ

ρ

)(
1

x10

)(
p(x10 − x00)− ρI

1− r
+ x00c0

)
(5)

This condition rules out situations where immediate investment is the optimal
strategy6.
Emphasizing the role of uncertainty over marginal cost seems particularly rel-
evant in the health sector, where it is not rare, unlike in most other sectors,
that innovations raise costs. An example of innovative technology that is cur-
rently spreading, whose marginal costs exceed by far those of its substitutes
is the Positron Emission Tomography. In that case, the radiopharmaceutical
to be used in the examination accounts for a large part of the total marginal
cost. Consistently with the assumptions introduced above, this cost has been
declining over time and this trend may be reasonably assumed to continue in
the future as a result of the increasing number of centres producing it and the
intense research on alternative production technologies.

The payoff functions for the different competitive situations are the following:

V00 = x00 [p + (r − 1)c0]
V01 = x01 [p + (r − 1)c0]
V10 = x10 [p + (r − 1)c(t)]
V11 = x11 [p + (r − 1)c(t)]

A non-negative profit condition for the basic technology is also assumed:

p + (r − 1)c0 ≥ 0

Since the payoff the providers get before they adopt the innovative technology is
in general different from zero, the model belongs to the class of ‘existing market’
models, as opposed to ‘new market models’ (Dixit and Pindyck (1994)). The

6The meaning of this condition will become apparent in Section 3.1.
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problem for each provider is to decide when to invest in the new technology.
The investment allows to increase the number of patients treated, according to
the model outlined above, and hence revenues, but implies that the marginal
cost of each treatment provided becomes stochastic and, in expected terms, it
is higher the earlier the time of adoption. It follows that in the model the
determination of the number of patients that chooses each hospital is static,
whereas the investment decision is dynamic. The optimal stopping problem is
solved assuming risk neutrality for both providers.

3 The stocastic case

When the variation of c over time is stochastic and follows the geometric brown-
ian motion (4), each provider faces the alternative between sticking to the basic
technology and thus incurring the constant marginal cost c0 and a level of de-
mand that never exceeds one half but may fall to x01 if the competitor invests
first, or investing in the new technology, thus facing uncertainty on c(t). This is
a typical optimal stopping problem: at each point in time the investor observes
the value of the stochastic variable whose process is known and decides whether
to invest or not. If providers were free from competitive pressures, the adoption
of a real option approach would lead to delay investment in comparison with
the optimal timing under the NPV approach, as a result of the value attributed
to the option to wait. When there is competition over patients, the value of this
option may not be fully exploited because the risk of bearing the cost of the
negative externality associated to the competitor’s entry creates an incentive in
the opposite direction.
The problem is solved backwards. First, competitors are assumed to be pre-
committed to a role (leader or follower) and the optimal threshold of the sto-
chastic variable is determined. This is done starting from the decision for the
follower under the assumption that the leader has already invested. Once the
optimal reaction is determined, the leader is assumed to optimally choose the
time of adoption, anticipating it. This also allows to fully characterize the
value functions for both roles under each strategic situation. Finally, the pre-
commitment hypothesis is relaxed and hospitals are allowed to compete for the
most valuable role.

3.1 Pre-commitment equilibrium

3.1.1 The follower

Under the assumption that the leader has already invested, the solution of the
follower’s optimal stopping problem is identical to that of a monopolist that
adopts a real option approach. As a result of the irreversibility of investments,
the value function in the stopping region (after investment) is just the expected
value of future returns (see Appendix A):
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F11(c) =
x11p

ρ
+

(r − 1)x11c

ρ− µ
− I (7)

In the continuation region (before investment) the value is the sum of the ex-
pected value under the status quo, plus the value of the opportunity to invest
(see Appendix A):

F01(c) = A2c
β +

x01p + (r − 1)x01c0

ρ
(8)

where, β < 0 is the negative root of the following second order equation:

1
2
σ2β2 +

(
µ− 1

2
σ2

)
β − ρ = 0 (9)

Each of the two value functions (7) and (8) specified above is relevant for a
range of values of the stochastic variable c. Hence, the follower’s value function
may be rewritten with more compact notation:

F (c) =

{
A2c

β + x01p+(r−1)x01c0
ρ for c > cF

x11p
ρ + (r−1)x11c

ρ−µ − I for c ≤ cF

(10)

The standard approach to the solution of the optimal stopping problem is to
impose the ‘value matching‘ and ‘smooth pasting’ conditions at the point where
it is optimal to invest, that is, the threshold value of the stochastic variable.
The first condition is quite intuitive, as it simply requires the value functions
before and after investment to match at the value of the stochastic variable for
which it is optimal to invest. The ‘smooth pasting condition’ also requires these
functions to have the same slope at the point where they match7.
These conditions enable to determine the optimal threshold for the follower (cF )
and the value of the constant still to be determined:

cF =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x11

)(
p(x11 − x01)− ρI

1− r
+ x01co

)
(11)

A2 =
c1−β
F

β

(
x11(r − 1)

ρ− µ

)
(12)

The reason why a positive term (A2 ≥ 0) is added to the expected value com-
ponent in F01 is that the follower has the right but not the obligation to invest.
In the mean time, no strategic power is left to the leader after the follower’s
irreversible investment.
The first term in the expression for cF picks up the impact of taking the value
of the option to delay investment into account. Since β is negative, that term is
positive and smaller than one in absolute value. Hence, the threshold is reduced

7For a comprehensive discussion of this condition, see Dixit and Pindyck (1994).
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and investment, in expected terms, delayed8. This effect is larger, the greater
the volatility component (σ) of the stochastic variable9.
The effect of an increase in the price component of the payment scheme is to in-
crease the threshold. As expected then, this induces earlier investment although,
for a given number of patients treated, the treatment provided with the basic
technology also becomes more profitable. The effect of an increase in r instead is
less intuitive. Equation (11) shows that the effect on the the threshold is consis-
tent with that of an increase in price only as long as p(x11−x01)−ρI > 0. Since
the effect of an increase in r is to increase the absolute value of the ratio, this
effect may take opposite signs depending on the sign of the numerator. When
the expected gain in revenues is not large enough to compensate for the cost of
the investment, a more generous scheme in the form of a higher reimbursement
component increases the relative profitability of the basic technology. From the
payer’s standpoint this has a further implication: for combinations of the pa-
rameters such that p(x11 − x01) − ρI < 0, an increase of the price component
combined with a reduction of the cost-reimbursement component may induce a
costless increase in the follower’s threshold10.

3.1.2 The Leader

As for the follower, the optimal stopping problem is first solved assuming that
the leader’s role is assigned beforehand. The main difference in this case is that
there will be three ranges of values relevant for the value function, corresponding
to the regions where neither (L00(c)), the leader only (L10(c)), and both (L11(c))
have invested. From the corresponding Bellman equations, the following value
function is obtained for the leader (see Appendix A):

L(c) =


K2c

β + x00p
ρ + (r−1)x00c0

ρ for c ≥ cL

E2c
β + x10p

ρ + (r−1)x10c
ρ−µ − I for cF < c < cL

x11p
ρ + (r−1)x11c

ρ−µ − I for c ≤ cF

(13)

where, the value of the constants obtained imposing the ‘value matching’ and
‘smooth pasting’ conditions is:

E2 = c−β
F

[
p

ρ
+

cF (r − 1)
ρ− µ

]
(x11 − x10) ≤ 0 (14)

8It is more standard in the literature to find an increasing effect of the option component
on the threshold in models where the stochastic variable with a positive drift is a positive
component in the objective function. In such cases it is optimal to invest for values at least
as large as the threshold. Since the drift component is negative in our model, the two results
are perfectly consistent in terms of expected time, in the sense that in both cases the option
component tends to delay the investment.

9It may be checked from the solution of equation (9) that increases in σ yield larger values
of β (smaller in absolute terms).

10Of course, as it will be seen in the welfare analysis, this is not always desirable from the
standpoint of an hypothetical social planner.
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K2 = E2 +
x10(r − 1)

ρ− µ

(
c1−β
L

β

)
(15)

As it is obvious, the value functions coincide for the leader and the follower after
both have adopted the new technology (L11 ≡ F11 for c ≤ cF ). The structure
of the other two functions is similar to that of F01(c), consisting of the expected
value under the status quo, plus an exponential term. As discussed above, in
F01(c) this may be interpreted as the value of the opportunity to invest. For the
leader, the interpretation is somehow more involved, because this term has also
to account for the follower’s option to invest, which is a negative component
from the leader’s standpoint. Since the investment is irreversible, after the
leader has invested, there is only an option available to the follower, whose
decision to invest depends on the value of the stochastic variable. The exercise
of such option creates a negative externality for the leader, so that its value in
this region must be smaller than the expected value under the current strategic
situation. This is what the exponential term in L10(c) picks up.
Going backwards, before the leader’s investment the option value includes the
opportunity to exploit the competitive advantage that in the pre-commitment
setting is exogenously assigned. This will be a positive value (second term
in K2). However, the option value that is relevant in this region must also
anticipate the opportunity for the follower to respond to the leader’s investment
canceling this advantage. Hence, the option value component in L00(c) may be
interpreted as the value of the opportunity to invest for the leader, net of the
externality associated to the opportunity for the follower to invest.
The usual boundary conditions allow to determine the optimal threshold for the
leader’s investment:

cL =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x10

)(
p(x10 − x00)− ρI

1− r
+ x00c0

)
(16)

The effect of changes in the payment scheme parameters is symmetric to the
follower’s case. Also the effect of variations in the other parameters is intuitive.
The effect of the term including β is proportional. This means that in the
standard case where cL > cF , taking the option to dealy investment into account
tends to reduce the gap between the thresholds relative to the case where the
decision criterion is the expected net present value. This is the opposite of what
happens in those cases where the relevant β is larger than one, and a larger
threshold (β/(β − 1) > 1) corresponds to a delayed investment.
The equilibrium under pre-committment is straightforward: the leader adopts
the technology at time TL, whereas the follower adopts in TF , where:

TL = min (t |c ≤ cL)
TF = min (t |c ≤ cF ) (17)

The comparison of the thresholds for the leader and the follower shows that in
principle either may be larger. If cF > cL, since the follower is committed to
invest only after the leader, its investment will occur just after that (‘cascade’).

10



The equilibrium in this case involves simultaneous investment: the leader invests
at TL and the follower immediately afterwords. As it is usually done in the
literature on strategic option games, in the rest of the paper we ignore this case,
assuming that there is some kind of first-mover advantage. In the standard
model discussed in the literature, where the payoff function is the product of
the stochastic variable and a deterministic part, this is ensured by a very simple
condition on the deterministic part of the function. In our model this may
not be ensured by such a simple condition. A formal condition is presented in
Appendix A, where it is also showed that ‘cascades’ are less likely to happen
when payment schemes are relatively less generous.

3.1.3 Simultaneous investment

As will be clear from the next section, for a full analysis of the equilibria,
the study of the optimal timing of investment under the hypothesis that the
providers are committed to invest at the same time is also needed. Technically
speaking, this analysis is identical to a monopoly problem, the relevant payoffs
before and after investment being respectively V00 and V11. The value functions
in the corresponding regions will be denoted by J00(c) and J11(c). The compact
form of the value function for the simultaneous investment is (see Appendix A):

J(c) =

{
D2c

β + x00p
ρ + (r−1)x00c0

ρ for c > cJ

x11p
ρ + (r−1)x11c

ρ−µ − I for c ≤ cJ

Imposing the usual boundary conditions, the values of the constant D2 and of
the threshold are determined:

D2 =
c1−β
J

β

(
x11(r − 1)

ρ− µ

)
(19)

cJ =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x11

)(
x00c0 −

ρI

1− r

)
(20)

The optimal time for simultaneous investment is TJ , which is defined as usual:

TJ = min (t |c ≤ cJ)

A first difference with individual strategies is that, as it is immediate to observe
in (19) and (20), the optimal timing of simultaneous investment is completely
independent of p. It is also straightforward to prove that the threshold for joint
investment is always smaller than the thresholds of the leader and the follower.
Hence, the optimal simultaneous strategy involves delayed investment. Finally,
eq. (20) shows that in this case an increase in the cost reimbursement component
always delays investment.
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3.2 Endogenous roles

The assumption that competitors are pre-committed to be either the leader or
the follower is obviously artificial for most situations in real life. In this sec-
tion, hospitals are finally allowed to decide if and when to invest in the new
technology, taking also into account how their own decision will influence the
competitor’s strategy. Fudenberg and Tirole (1985) show that moving from
discrete to continuous time framework, the concept of sub-game perfection de-
veloped in the first setting is not sufficient to fully characterize the equilibria.
Therefore, in principle a game in continuous time may not be solved as the limit
of the discrete time case. The extension of the concept provided by Fudenberg
and Tirole allows a complete analysis of mixed strategies for symmetric players.
Equilibrium outcomes, however, turn out to be equivalent to the case where
players adopt pure strategies but may take on different roles. For the sake of
simplicity, then, as it is often done in the literature on strategic option games,
we exploit this coincidence in outcomes to restrict attention to pure strategies
in what follows.
The complete description of the closed-loop equilibrium requires two alternative
cases to be separately discussed:

Case a): ∃c > cF |L(c) > J(c, cJ)

By J(c, cJ), we denote the value of simultaneous investment when the value of
the stochastic variable is c(t), under the assumption that providers will invest
in TJ .

Figure 1: Case a

It may be proved (Appendix A) that L10(cL) > F01(cL). Hence, at the time
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when it is optimal for the leader to invest, investing first is more convenient
than waiting. Moreover, by definition of Case a, there is a range of values of
the stochastic variable that includes the threshold cL, where the value of the
leader exceeds that of the optimal joint investment. Starting from cL, under
the assumption that neither competitor has invested yet, there is no incentive
to wait longer. On the contrary, the value being strictly larger for the leader
than for the follower and roles being now endogenous, there will be an incentive
to preempt the other investing in cL + ε. The optimal response to this will be
re-setting the threshold again to cL + 2ε. Such an incentive will exist as long as
L10(c) = F01(c), which occurs in cP

11 (Fig.1).
Let us define,

cP = max (c |L10(c) ≥ F01(c))
TP = min (t |c ≥ cP )

The equilibrium is than the following:

In Case a, the only equilibrium is sequential. The leader invests in TP , the fol-
lower in TF .

Case b): ∀c > cF , J(c, cJ) ≥ L(c)

Figure 2: Case b

In this case, the convenience of preemption disappears, as long as competitors
may coordinate simultaneous investment at the optimal threshold cJ . Nonethe-
less, investment in TP and TF are still reciprocally best responses. Hence, the

11The existence and uniqueness of cP is proved in Appendix A.
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preemption equilibrium discussed under Case a is still an equilibrium, but no
longer the only one. Let us define,

cS = max (c̃ |J(c, c̃) ≥ L(c))

Recall that the value function that is drawn in Fig.2 is J(c, cJ). In other words,
the relevant function J00(c) to the right of cJ is obtained working backwards
under the assumption that the threshold is the optimal one. If investment is
made at different times, the shape of J00 is different from the one shown in
the figure. In particular, departing from the optimum will reduce the value
of simultaneous investment, so that this may fall below that obtainable with
preemption.

In Case b two classes of equilibria exist. There is a preemption equilibrium with
the same characteristics discussed under Case a, and a continuum of equilibria
for values of the stochastic variable such that cJ ≤ c ≤ cS . All equilibria may
be Pareto-ranked in this case, the optimal choice being simultaneous investment
in TJ .

What happens in this case is that the option-like negative value that enters
in L10(c) picking up the negative externality associated to the possibility of
subsequent entry by the follower, is large enough that the advantage to exploit
a larger demand before this happens may not be sufficient to make engaging
in preemption profitable relative to waiting and investing simultaneously. As
it may be seen in Fig.2, whether the equilibrium is only sequential or also
simultaneous depends on the relative position of L00(c) and J00(c). In particular,
since for high values of c both curves tend to the same value, the relevant
situation will be Case b if and only if K2 ≥ D2. This issue will be investigated
in more details in the following section.

4 Payment scheme and investment timing

The analysis of the previous section has showed that the determination of times
of adoption by competitors may be complicated for at least two reasons. First,
in the preemption equilibrium the relevant threshold for the leader’s investment
is cP , which cannot be defined in closed form. Second, which thresholds are
actually relevant for the timing of adoption depends on whether the equilibrium
is sequential or simultaneous. Therefore, once the assumption of exogenous roles
is relaxed, the description of the impact of p and r on cL and cF provides a very
limited contribution to the investigation of the actual times of adoption. In this
section, these two effects are studied. Since it has been showed above that even
referring just to the pre-commitment thresholds the effect of increases in r are
ambiguous, the attention in this section will be mainly on the effects of increases
in price, the objective being to check whether the anticipation effect discussed
above is robust to endogenous roles.
As to the first issue, the impossibility of finding a closed form solution for cP
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makes the analysis of the impact of the payment scheme on this threshold not
straightforward12.
In order to see what the impact of a change in the payment scheme on the type
of equilibrium is, the effect of such changes on the value of the constants D2 and
K2 needs to be considered. As it may be seen from equations (20) and (19), both
the optimal simultaneous threshold cJ and the constant D2 are independent of
price. This is a consequence of what may be considered a specific characteristic
of the health care sector, that is the fact that total number of patients is assumed
fixed. Since revenues are deterministic and both before and after simultaneous
investment each hospital treats exactly half patients, the optimal timing and
the value function are independent of p. Therefore, attention may be restricted
to the effect on the option value to invest as first (K2).
In Appendix B it is showed that increases in p may reduce K2 and hence make
the outcome with simultaneous investment comparatively more likely. Since
optimal simultaneous investment occurs always later than both the leader’s
and the follower’s in sequential equilibria, by making the simultaneous outcome
comparatively more profitable, increases in price may induce providers to delay
investment.
The reason why this happens is that from the leader’s perspective, the effect of
an increase in p is twofold. On the one hand, it increases the additional revenue
that may be obtained by investing first, as long as the follower has not invested
yet. With exogenous roles, this also induces the leader to anticipate investment.
On the other hand, a similar incentive is provided to the follower to reduce the
time length of the period characterized by a technological disadvantage. This
has a negative impact on the leader’s value (∂E2/∂p < 0). If the latter effect
outwieghts the former, increases in the price component will lead to a situation
where the incentive to preempt the competitor is small enough to make simul-
taneous investment more convenient.
Recalling the effect of r on pre-commitment thresholds, the following conclusion
may be derived from the study of equilibria:

When providers compete over patients, more generous schemes, both in the price
and the cost reimbursement component, may delay the adoption of innovative
technologies.

5 Welfare Analysis

The aim of this section is to compare the possible outcomes of the strategic in-
vestment game as discussed above with the timing an hypothetical social planner
would choose, assuming that this may decide, observing the stochastic variable,
at what time each hospital should invest. This comparison will then be the base

12It may be checked that not even the implicit function theorem leads to clearcut conclu-
sions. In all the simulations performed in Appendix A increases in p increase the preemption
threshold cP as long as the equilibrium outcome is sequential
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for the following attempt to draw some policy implications from the analysis.
This issue has apparently been neglected so far in the literature on strategic op-
tion games. In several papers, the competitive investment thresholds have been
compared with the monopolistic ones, highlighting the erosion of the value of the
option to postpone investment implied by strategic interactions. Weeds (2002)
compares the strategic solution with the optimal timing under the assumption
that competitors may coordinate their investments. Some of the results ob-
tained by Weeds will also be relevant in our analysis. In our case, however,
the social planner has not only the ability to coordinate investments, but also
a separate objective.
The following social payoff functions are defined respectively for the situations
where neither, only one and both hospitals have adopted the innovative tech-
nology13.

W0 = B0 − c0

W1 = x10B1 + x01B0 − x10c + x01c0

W2 = B1 − c
(21)

Social welfare is assumed to be given by the total benefit received by patients
through treatments received, net of costs of providing the treatment, across
providers. The cost of transport is not included in the social welfare function.
This may be justified on the ground of a reasonably much greater weight assigned
at the social level to health benefits in comparison with transportation costs. In
fact, adding this further component would not add much to the analysis14. As
it is clear from the payoff functions above, it is also assumed that money may
be raised to finance payments to providers without any efficiency loss.
From the social perspective, there are now two optimal thresholds to be derived,
corresponding to the investment in the first and in the second hospital. In
deciding when to invest in the first hospital, the social planner anticipates the
option to invest in the second at a later stage. Consequently, there are three
value functions, corresponding to the three payoff functions in (21). Following
the same approach to the real option problem that was adopted for the private
problem the following value functions obtain:

Ω2(c) =
B1

ρ
− c

ρ− µ
− 2I (22)

Ω1(c) = F2c
β +

x01B0 + x10B1 − c0x01

ρ
− x10c

ρ− µ
− I (23)

Ω0(c) = G2c
β +

B0 − c0

ρ
(24)

13As it is obvious, the situations where hospital A has invested and B has not done so yet
is equivalent to its symmetric from the social standpoint.

14The main implication of adding transportation costs to the social payoff function is that
situations of asymmetric technology become comparatively less desirable, because the overall
cost of transport is relatively higher.
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with, β < 0.
Since c is assumed to follow the same stochastic process discussed in the previous
sections, the same restrictions also apply. Therefore, the coefficients associated
to the terms whose exponential is positive (F1,G1) have still to be set equal
to zero. The usual value matching and smooth pasting conditions may now
be used to determine the optimal investment thresholds and the value of the
constants F2 and G2. Working backwards, the optimal threshold for the second
investment turns out to be:

c2 =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x01

)
(x01(B1 −B0) + x01c0 − ρI) (25)

with, β < 0.
This expression is not defined when x01 = 0. This case may be ruled out by
introducing the following restriction:

δ <
1

B1 −B0
(26)

In practice, this is not a problem because there always exists a value x01 > 0
such that it is not optimal to invest in the second hospital, independently of the
value of c. Eq. (25) may be used to determine the constant associated to the
option value for the second investment:

F2 =
c1−β
2

−β

(
x01

ρ− µ

)
(27)

The maximum value of the stochastic variable for which it is optimal to adopt
technology in the first hospital is:

c1 =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x10

)
(x10(B1 −B0) + x10c0 − ρI) (28)

the value of the second constant being,

G2 = F2 +

(
c1−β
1

−β

)(
x10

ρ− µ

)
(29)

The comparison between the competitive and the social optimal solution may
start from the analysis of the value functions in the corresponding regions. The
structure of the value function is the same, being made up, as long as further
investment is possible, of two parts. The linear part in all three functions is
just the expected value under the status quo, whereas the first term picks up
the value of the option to invest at some later stage. The interpretation of the
option component, however, is somehow different now. In the competitive case,
the option component that was relevant before the first investment (K2) was
given by the algebraic summation of the value of the pure option to invest, net
of the option-like term picking up the ‘cost’ of the threat of entry by the follower
(E2). The possibility of coordinating investments in this case, instead, implies
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a positive value of the opportunity to invest in the second hospital (F2 > 0),
after the first has already adopted the innovative technology. This value enters
positively the option value for the first investment (G2), thus picking up the
option to expand overall investment, free of competitive pressures.
More generally, there are two separate sources for the differences between the
competitive and the social optimal strategies. There is the asymmetry in the
objectives pursued on the one hand, and the pure competition effect on the
other. A comprehensive interpretation of the differences that arise under differ-
ent conditions requires these two effects to be disentangled.
The competitive effect may be isolated by comparing the competitive solution
with the solution of an hypothetical collusion problem, where, the objective
functions being the same, providers may coordinate their investment strategies
in order to maximize overall value. This is the analysis Weeds (2002) carries out.
That paper provides support for the intuition that competition prevents players
from fully exploiting the option to delay investment as long as the outcome is
a pre-emption equilibrium. However, when the equilibrium is simultaneous, the
investment may be delayed relative to the first-best, at least for the leader.
We can briefly go through the results of a similar exercise for our case in order
to isolate the competitive effects in this framework. The optimal thresholds for
the collusive case (cc1 and cc2) may be easily obtained starting from the social
thresholds (equations (28) and (25)), eliminating from the last parenthesis on
the right hand side the term including B1,2 and dividing ρI by (1− r):

cc2 =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x01

)(
x01c0 −

ρI

1− r

)
(30)

cc1 =
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x10

)(
x10c0 −

ρI

1− r

)
(31)

It is immediate to check that cc1 > cc2. Therefore, the social (collusive) optimal
investment timing is always sequential in this case. From the assumption that
total demand is fixed and the price component is independent of the technology
adopted, it follows that the optimal thresholds under collusion, unlike under
competition, are independent of p. Since p is multiplied by a positive term both
in the expression for cL and cF , this provides an incentive toward inefficiently
early investment under competition. The weight attached to c0 is also different.
This difference may be interpreted as a kind of externality: while assessing the
convenience of investment, each provider will compare future with own current
costs, thus failing to account for the reduction in the number of patients treated
by the competitor who has not invested yet. When dealing with costs, this leads
to overestimation of future costs relative to the social optimum and hence to
inefficient delay. Overall, under the condition that ensures non negative profits
under the old technology (p + (1 − r)c0 ≥ 0), the former effect outweighs the
second, thus inducing to anticipate investment.
Finally, the effect of a change in the cost of investment I has to be investigated.
The comparison between the thresholds under competition with those under
collusion shows that this effect is symmetric for the first investment, but not for
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the second. The negative term −ρI is divided by a smaller number (x01) in the
expression for cc2 than for cF . Hence, this adds a new source of inefficiency in
the form of ”early investment” for the competitive solution. Moreover, the ef-
fect being asymmetric across competitors, there will also be an inefficiently short
time lag between investments. The intuition for this builds on the observation
that the optimal investment decision follows from the comparison between the
cost of the investment and the differential in terms of revenues and costs. For
the first investment, x10 is the number of patients whose cost of treatment de-
pends on the stochastic variable, both in the cooperative and the competitive
problem. At the time of the second investment, instead, from the competitor
(follower) standpoint the number of patients to treat with the new technology is
x11, whereas for the cooperative solution the difference with the previous stage
is of x01 patients only.

Assuming once more that the optimal competitive thresholds are such that
cF < cL, it can be shown that the optimal thresholds are ranked as follows:

cc2 ≤ cJ ≤ cc1 ≤ cL

cc2 ≤ cJ ≤ cF ≤ cL
(32)

where, cJ is still the optimal threshold for simultaneous investment.
Only cc1 and cF cannot be unambiguously ranked. Bearing in mind that the
stochastic variable enters the payoff function with the opposite sign, these re-
sults are perfectly consistent with those from Weeds (2002) in terms of expected
time of adoption. It is confirmed, therefore, that under competition the value of
the option to delay cannot be fully exploited and this induces inefficiently early
investment for both providers, at least as long as the outcome is preemption.
The difference between the ’private’ and the social objective, however, plays a
role in the opposite direction in our case. The comparison between the collusion
(eq. (30) and (31)) and the social thresholds (eq. (25) and (28)) shows that the
latter are higher than the former, as a result of the benefits enjoyed by patients
entering the social utility function and the fact that profit maximizing hospitals
would fail to take some part of the cost of treatment (r) into account. Whether
the social thresholds will be larger or smaller than the competitive ones, instead,
will depend on the parameter values. As long as the leader’s threshold is the
highest, one may immediately conclude that the preemption threshold, being by
definition higher than the leader’s, will exceed any other threshold. When this is
not the case, however, the leader’s threshold provides just a lower bound for the
threshold that is actually relevant in a preemption equilibrium. The problem
is again the impossibility to find a closed form solution for cP . In other words,
whereas it follows immediately from cL ≥ c1 that the competitive investment
is anticipated relative to the social optimum, the opposite conclusion cannot be
drawn if cL < c1.
This problem, together with the relatively large number of parameters that en-
ters the solution, prevents from achieving a straightforward comparison, similar
to that carried out between the competitive and the collusive solution. Bear-
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ing this in mind, the following section aims to provide some mainly qualitative
policy insights.

5.1 Policy issues

The viewpoint that is adopted in this section is that of a regulator, whose objec-
tive is to use the available policy instruments so that the outcome of competition
between providers is as close as possible to the first-best. As explained above, a
full algebraic analysis is beyond the scope of this section, which provides mainly
qualitative insights.
The main instrument available to the regulator is the definition of the payment
scheme, and the following analysis will consistently be concentrated on this15.
The first thing to note looking at the thresholds and the constants that deter-
mine which kind of equilibrium will prevail, is that there are different classes
of variables playing different roles within the policy analysis. The most mean-
ingful distinction in this framework seems to be that between those that we
are going to call ‘treatment specific’ and ‘innovation specific’ variables. The
elasticity parameter δ (inverse of the cost of transport) is the most relevant in
the first class, which also includes the basic technology marginal cost c0. The
innovation specific variables are B1, µ, σ, I. The first class, unlike the second,
is known beforehand, and the policy instruments in principle may be tailored
to treatments with different characteristics in this respect. An interpretation of
elasticity in terms of urgency has already been provided. Another characteristic
of the treatment that may have an impact on elasticity may be the comparison
between waiting lists for treatments provided with new versus old technology.
The restriction on δ that ruled out situations where the demand by a single
hospital would exceed one, still holds16.
Starting from the lowest values of elasticity, in terms of optimal thresholds the
situation may be characterized as follows:

When δ → 0:

• cj < cF < cL < c2 < c1

• c1 → c2

• cL → cF

• cP → cL

• cJ → cF

15However, it has been seen above that two different classes of equilibria, with specific
characteristics in terms of timing of adoption are possible. This result was obtained assuming
that providers are perfectly symmetric. Assuming the regulator has the opportunity to give
a competitive advantage to one of the players, symmetry would fall and this would have an
impact on the adoption timing. Hence, this might be a further policy instrument, whose role
might be worth investigating.

16As it is clear from inequality (26), this condition also depends on the benefits. Since the
following analysis will be carried on for given B1 and B0 this issue will be ignored.
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The first three points above follow immediately from the equations for the cor-
responding thresholds. The last two points are in turn implied by these. When
cL → cF , it is easily proved that A2 → K2. Since also the linear parts of F01

and L00 tend to coincide for δ → 0, the two curves tend to overlap and the
difference between cP and cL tends to be canceled.
It is also possible to prove that for very low values of the elasticity, the compet-
itive equilibrium tends to be of preemption, regardless of the values the other
parameters assume. Hence, under this extreme condition, the type of compet-
itive equilibrium that prevails is consistent with the social equilibrium, both
being sequential. The timing of investment, instead, is not optimal, though
the tendency to reduce the time lag between investments for low levels of elas-
ticity is so. Competitive investments both by the leader and the follower will
be delayed with respect to the social optimum. This delay will be larger, the
larger the difference in the benefits enjoyed by patients treated with alternative
technologies, which profit maximizing providers fail to consider17.
The description of equilibria for δ → 0 that has just been done holds inde-
pendently of all the other parameters. As δ is increased, the other variables,
including the policy parameters, do play a role both in determining the optimal
thresholds and the type of equilibrium. The objective now is to see how elas-
ticity influences the optimal times of adoption in the competitive and the social
perspective, given the values of the other variables.

Figure 3:

The following results may be proved (see Appendix C):

An increase in elasticity induces an increase in the competitive thresholds both
17Of course, this result may not hold if hospitals were assumed to draw utility directly

from benefits enjoyed by patients. However, this section is mainly focused on how differences
in treatment specific variables affect the difference between competitive and social optimum.
Therefore, we are more interested in changes corresponding to different elasticities rater than
in levels.
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for the leader and the follower. For the social optimum, instead, the effect is an
anticipation of the first investment (higher c1) and a delay of the second (lower
c2). For δ ≥ δ∗∗ it will always be optimal in the social perspective to adopt the
innovative technology in one hospital only.

As it is clear from Fig.3, since both cF and c2 are continuous in x10, it fol-
lows from what was observed above that there will be a point δ∗ such that the
threshold associated to the second investment is the same in the social and the
competitive solution with sequential equilibrium. For δ < δ∗ the investment by
the follower is inefficiently delayed relative to the social optimum, whereas for
δ > δ∗ it is anticipated.
The level of δ∗, however, depends on the specific characteristics of the innova-
tion. This means that it is not possible for policy purposes to define exactly
over which level of elasticity competition induces early investment. The relevant
information, though, is the tendency to anticipate the second investment in the
competitive situation for treatments that allow patients to be comparatively
more responsive to the opportunity of being treated with better technology.
Moving to the analysis of the relevant threshold for the first investment, things
get significantly more complicated, due to the impossibility of finding a closed
form solution for cP . The dependency of cL on the elasticity that appears in
the figure provides just a lower bound for actual time of adoption by the leader
when the equilibrium involves preemption. In the figure above, the payment
parameters p and r are assumed constant. The question now is whether some
indication can be given as to the way these parameter should be set in order to
reduce the distortions that arise from competition.
We begin from the comparison between c2 and cF . It has been shown that for
treatments with low elasticity competition tends to induce delayed investment
relative to cases where δ is higher18. Given the cost of investment I, the com-
paratively small difference between x11 and x01 makes it more likely that an
increase in r delays the expected time of investment19. Since cF in this region is
inefficiently low, the appropriate scheme to reduce the distortion has no cost re-
imbursement component (r = 0)(see also simulations in Appendix C). In terms
of price component, however, the payment scheme for low elasticity treatments
should be comparatively generous, so that the tendency to delay investment
induced by competition may be at least partly counterbalanced. Moving to the
first investment, as long as elasticity is low, the curves L00 and F01, are rela-
tively close to each other. When this is the case, the difference between cP and
cF is small. This is coherent with the comparatively small difference between
c1 and c2 for low values of δ.
As δ gets larger, the optimal threshold for the second investment is reduced.
In the competitive situation, this may be induced setting up a less generous
scheme for this class of treatments, such that the tendency to increase cF that

18There will also be delay in absolute terms if, as it has been assumed in Fig.3, the providers’
payoff functions do not directly depend on patients’ benefits.

19Recall from the base model that if p(x11 − x01) − ρI < 0, an increase in the cost-
reimbursement component r reduces the threshold.
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is showed in the figure may be offset. The price component, therefore, should
be definitely reduced.

Let us see now how the reimbursement scheme should be designed in order
to induce investment by one hospital only, which has been seen to be always
optimal from the social perspective for δ ≥ δ∗∗. The level of price that prevents
investment by the follower is:

p ≤ ρI − x01c0(1− r)
x11 − x01

(33)

As expected, increases in δ (that imply decreases in x01), must be compensated
by lower values of p. As assumed so far, however, the combination of p and r
must be such that:

p ≥ (1− r)c0

The two equations above will only be simultaneously satisfied if:

r ≥ 1− ρI

c0x11
(34)

Inequality (34) implies that when the right hand side is positive, the payment
scheme must include a cost-reimbursement component to induce investment by
one provider only. The key variable that determines whether this is the case (I)
is ‘innovation specific’. Furthermore, it should be noted that a necessary con-
dition for cF to be non positive is p(x11 − x01)− ρI < 0. Under this condition,
an increase in r reduces the follower’s threshold, thus reinforcing the role of a
reduction in p in obtaining only one investment. The simulations in Appendix
C also seem to suggest that above a certain level of δ and for specific innovations
a payment system may be designed that induces the social optimal timing.
The qualitative analysis of how the policy instruments may be used to reduce
the distortions that arise from competition may be summarized as follows. The
social optimal timing of adoption is always sequential. For treatments charac-
terized by a low responsiveness of patients seeking care to differences in the level
of benefit associated to alternative technologies, competitors tend to inefficiently
delay time of adoption of innovative technologies. For this class of treatments,
a generous pure fixed fee scheme performs comparatively better. As elasticity
is increased, the social optimum involves a widening gap between the first and
the second investment, up to a point where it becomes optimal to invest in one
provider only. The analysis of the effect on the lower bound cL and the result
of the simulations seem to suggest that in the competitive situation, for given
cF , an increase in elasticity induces a higher cP , consistently with the tendency
of the socially optimal timing. In order to rule out investment by the follower
when the elasticity parameter is sufficiently large, or sufficiently delay it, adding
a cost reimbursement component to the payment scheme may be necessary.
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6 Conclusions

The paper has investigated the optimal timing of investment in innovative tech-
nologies by health care providers competing for patients. This seems a relevant
issue within the debate on the increasing costs of health care provision, part of
which is usually attributed to the adoption of new technologies that improve
the health outcome, but often boost costs.
Particular attention has been paid to the uncertainty that characterizes new
technologies especially at the earlier stages of their development. In this con-
text, as it has been recently pointed out also in the health economics literature,
the real option approach provides a more comprehensive way to account for
uncertainty. The effect of the interaction between the conflicting incentives pro-
vided by competition and the option values on the timing of adoption has been
studied. As it is typical in game theoretic real option models the equilibrium
is either sequential or simultaneous, depending on the parameter values. In the
preemption equilibrium, an incentive exists to preempt the competitor up to
the point where leader’s and follower’s values are equaled. In this case invest-
ment is sequential in equilibrium. In the second class, besides the preemption
equilibrium, a continuum of Pareto-ranked equilibria exists, where investment
is simultaneous.
It has been showed that in this framework more generous payment schemes for
providers do not always induce to anticipate the adoption of innovative technolo-
gies. This happens for the cost-reimbursement component even under precom-
mitment, when the investment does not provide sufficiently large advantages in
terms of revenue, given the cost of investment. For the price component, this is
a peculiar effect due to the adoption of a real option approach in a competitive
setting: there may exist a level of per patient price such that the follower has
an incentive to invest early enough to cancel the advantage of the first mover,
that will find more profitable to wait for a simultaneous and hence delayed in-
vestment.
Depending on the parameter values, investment under competition may happen
both later and earlier than the social optimum. The latter case is more likely
for treatments for which patients are more willing to move in order to benefit
from better technology. It has been showed that the payment system that aims
to induce a timing of investment across elasticity levels with the same charac-
teristics as the one an hypothetical social planner would choose, should become
less generous as elasticity raises and include no cost reimbursement component
for treatments with sufficiently low levels of elasticity.

A Appendix

Derivation of F (c): In the stopping region, the value function is the sum-
mation of the present value of the deterministic part of the payoff function, net
of the present expected value of costs, minus the cost of investment. The first
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component, of course, is given by,

x11p

ρ

Following the same steps as in Huisman (2001) (Ch.7, Appendix A1), it may be
showed that the expected value of the stochastic component is:

(r − 1)x11c

ρ− µ
(35)

Moving to the continuation region, the following Bellman equation applies:

ρF01(c) = V01 + limdt→0
1
dt

E[dF01(c)] (36)

Applying Ito’s Lemma, the last term on the right hand side may be written as:

E[dF01(c)] =
(

µc
∂F (c)

+
1
2
σ2c2 ∂2F (c)

∂2c

)
dt + ◦(dt) (37)

The substitution of this into eq. (36) yields the following differential equation:

−ρF01(c) + µc
∂F (c
∂c

+
1
2
σ2c2 + V01 = 0 (38)

The general solution is:

F01(c) = A1c
β1 + A2c

β2 +
x01p + (r − 1)x01c0

ρ
(39)

where, β1 > 1 and β2 < 0 are the solutions of the following equation:

1
2
σ2β2 +

(
µ− 1

2
σ2

)
β − ρ = 0 (40)

For sufficiently large values of c it will not be profitable to exercise the option
to invest. Hence the follower’s value in this case is,

x01p + (r − 1)x01c0

ρ

This adds a restriction on the general solution (39), which requires A1 to be set
equal to zero.

Derivation of L(c): Also in this case, the value function is obtained work-
ing backwards. In the follower’s stopping region, the value for the two per-
fectly symmetric providers is obviously identical (F11(c) ≡ L11(c)). For the
leader, however, there will be three relevant functional forms corresponding to
the ranges of values for which it is optimal for the leader to wait, the leader only
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has invested, both have invested. The relevant Bellman equation in the second
region is:

ρ (L10(c) + I) = V10 + limdt→0
1
dt

E[dL10(c)] (41)

Using Ito’s Lemma as it has been done above for the follower’s case, a differential
equation is obtained, with the following general solution:

L10(c) = E1c
β1 + E2c

β2 +
x10p

ρ
+

(r − 1)x10c

ρ− µ
− I (42)

Since, as for the follower, the stochastic variable is a negative component of the
payoff function, the coefficient corresponding to the positive exponential (E1)
must again be set equal to zero. Of course, again the two functions should
match at the follower’s threshold:

L10(cF ) ≡ L11(cF )

This time, however, the investment decision is up to the follower. Hence, no
smooth pasting condition is required to hold at that point.
The leader’s value function in the continuation region (L00(c)) may be obtained
by straightforward adaptation of the steps followed to obtain F01(c):

L00(c) = K2c
β +

x00p

ρ
+

(r − 1)x00c0

ρ

Finally, value matching and smooth pasting conditions are used to determine
the value of K2 and the threshold cL.

Derivation of J(c): Since the assumption in this case is that the providers
may coordinate simultaneous investment at the optimal threshold cJ , technically
speaking, the problem is one of monopoly. Using the payoff functions V11 and
V00 respectively in the stopping and the continuation region, the same process
as for the follower’s problem may be applied to derive the value function in (18).

Condition that ensures cL > cF : Under the following condition, the leader’s
threshold is larger than the follower’s threshold and therefore ‘cascades’ are ruled
out:

ρI > p(x10 − x00) + (1− r)c0

[
x00x11 − x10x01

x11 − x10

]
(43)

The first term on the right hand side is clearly positive, whereas the second
is negative. It should be observed that a more generous scheme, either on
the price or cost reimbursement component, makes the ‘cascade’ comparatively
more likely.
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Proof that there exists a unique cP > cL: It is immediate to see from the
value functions, that for c large enough it will be L10(c) ≤ F01(c). Since,

F ′
01(c) < 0 ∀c(t)

F ′′
01(c) > 0 ∀c(t)

L′′10(c) < 0 ∀c(t)

the existence and uniqueness of cP if immediately proved if L10(cL) > F01(cL).
By construction (value matchng condition in c(F ) for the leader) there will be
at least an intersection between L10(c) and F01(c). Since we have ruled out
situations where cF ≥ cL, and L10 is concave for all values of c, there will be
two intersections. The lower value at which the curves intersect is cF . In cL,
L10(c) and L00(c) are tangent. Observing that for sufficiently large values of
c, L00(c) lays above F01(c), there may be two cases. If L00(c) is always higher
than F01, it is immediately proved that L(cL) > F (cL). If this does not hold,
L00(c) is flatter than F01(c) and in principle cL might lay in the region where
L10(c) < F01(c). Since L′′10 < 0, then it will be L′10(cF ) > L′10(cL). But in this
case we have L′00(c) > F ′

01(c)∀c (smaller in absolute value), and therefore the
tangency between L10(c) and L00(c) occurs in the region where L10(c) > F01(c).

B Appendix

The effect of p on optimal thresholds and equilibrium outcomes:

Let us start considering the effect on K2 of increases in p. The less intuitive and
hence most interesting case is that where ∂K2/∂p < 0. This will be the case if
the following condition is satisfied:

−βpc−β−1
F

(
β

β − 1

)(
ρ− µ

ρ

)(
1

x11

)(
x11 − x01

1− r

)
+c−β

F ≥ − β

x11
c−β
F (x11−x01)+c−β

L

All the terms in the expression are positive. It may be showed that the first
term on the left hand side is always larger than the first term on the right hand
side. Of course, instead, c−β

F is smaller than c−β
L . A priori, then, it is not possi-

ble to conclude that either side is larger. Attempts to go on with the algebraic
manipulation get soon rather cumbersome. It may be observed, however, that
the situations where the difference between cL and cF is large are the main
candidates for the inequality not to be satisfied. This happens, ceteris paribus,
for comparatively low levels of p. This follows from observing that an increase
in p has a larger effect on cF than on cL. The following simulations, however,
show that even for prices that weakly satisfy the non-negative profit condition,
∂K2/∂p may be negative.
Two simulations are run for different sets of reasonable parameters, letting p
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increase, starting from the minimum value such that p ≥ (1− r)c0.

Simulation 1:
Fixed parameters:
r = 0.3; c0 = 4; ρ = 0.05; I = 20; µ = −0.05; σ = 0.08; B1 = 6; B0 = 2; δ = 0.2.

Tab.1

p cF cJ cP
20 D2 K2 Equilibrium

2.8 1.08 1.08 3.58 4.52 12.73 Case a
3.2 1.51 1.08 4.05 4.52 9.57 Case a
3.6 1.94 1.08 4.59 4.52 5.81 Case a
4 2.37 1.08 5.15 4.52 1.44 Case b

4.4 2.8 1.08 5.63 4.52 -3.54 Case b

Simulation 2:
Fixed parameters:
r = 0; c0 = 2; ρ = 0.04; I = 15; µ = −0.03; σ = 0.15; B1 = 5; B0 = 3; δ = 0.2.

Tab.2

p cF cJ cP D2 K2 Equilibrium
2 0.62 0.62 1.19 3.81 4.2 Case a

2.4 0.74 0.62 1.43 3.81 4.49 Case a
2.8 0.87 0.62 1.65 3.81 3.74 Case b
3.2 0.99 0.62 1.89 3.81 3.12 Case b
3.6 1.12 0.62 2.18 3.81 2.34 Case b

The simulations show that, as the price increases, not only the pre-commitment
thresholds (the follower’s is still relevant also in preemption equilibria), but also
the preemption threshold seems to increase. In both cases, for low values of
p the equilibrium is of preemption (Case a). As p increases, K2 is reduced
and falls below D2 for sufficiently generous payments. When this happens, the
Pareto-superior equilibrium is simultaneous and the corresponding threshold
is cJ , which determines a sort of jump corresponding to a significant delay of
adoption.

20The values of cP that are reported in this and in the following tables are approximated.
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C Appendix

Effects of elasticity on optimal thresholds: Recalling that increases in
δ are reflected in increases (reductions) in x10 (x01), it is easy to check that a
higher level of δ increases the social threshold c1 and reduces c2.
For the competitive thresholds cF and cL, the proof follows immediately from
the derivatives with respect to δ:

∂cL

∂δ
=
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x2
10

)(
∂x10

∂δ

)(
px00 + ρI

1− r
− x00c0

)
∂cF

∂δ
=
(

β

β − 1

)(
ρ− µ

ρ

)(
1

x11

)(
∂x10

∂δ

)(
p

1− r
− c0

)
Both derivatives are positive (strictly in the first case) under the non negative
profit condition.

Simulations: The simulation in Tab.3 is aimed at visualizing the effects of
the different degrees of elasticity on the investment thresholds and the type of
equilibrium outcome, given the other parameter values. It is build starting from
Simulation 2 above (Tab.2), setting price at an intermediate level (p = 2.8) and
keeping all the other parameters unchanged.

Tab.3

δ x10 cF cJ cP c2 c1 D2 K2 Equilibrium
0.01 0.51 0.63 0.62 0.7 2.15 2.19 3.8 3.81 Case a
0.13 0.63 0.78 0.62 1.39 1.84 2.36 3.8 3.84 Case a
0.24 0.74 0.92 0.62 1.8 1.31 2.47 3.8 3.61 Case b
0.36 0.86 1.06 0.62 2.03 < 0 2.56 3.8 2.94 Case b
0.48 0.98 1.22 0.62 2.21 < 0 2.63 3.8 1.85 Case b

Tab.3 shows that the effect of δ on cp seems consistent with what we expected
observing the effect on its lower bound cL. Therefore, in preemption equilib-
ria the leader tends to invest earlier when this enables to attract a relatively
large number of patients, other things being equal. It is also worth observing
from the last column that as δ increases there may be a shift from sequential
to simultaneous equilibria. This effect will be more carefully discussed in the
following simulation.

Given that some effects are particularly difficult to investigate algebraically, we
investigate in a new simulation how the characteristics of the social optimal
timing for treatments with different characteristics in terms of elasticity may be
ensured by appropriately designing the payment scheme. As it has been seen
above, innovation specific characteristics, that are kept constant in the simula-
tion do play a role. However, the qualitative insights associated to the effects
of changes in the treatment specific parameter, seem to be valid independent of
the values the other parameters take on.
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Tab.4

δ x10 p r cF cJ cP c2 c1 D2 K2 Equilibrium
0.01 0.51 3.1 0 0.64 0.62 0.76 2.15 2.19 3.8 3.81 Case a
0.13 0.63 2.8 0 0.78 0.62 1.18 1.84 2.36 3.8 3.84 Case a
0.24 0.74 2.6 0 1.07 0.62 1.64 1.31 2.47 3.8 3.98 Case a
0.36 0.86 1.5 0.5 < 0 < 0 2.52 < 0 2.56 0 5.09 Case a
0.48 0.98 1.4 0.5 < 0 < 0 2.62 < 0 2.63 0 7.35 Case a

Let us start using the parameter values as fixed in Tab.2 and Tab.3 and let
δ vary. Starting from a very low value of δ, if p is left at the same level as
in Tab.3 the equilibrium is sequential but, as expected, both the leader’s and
the follower’s investment turn out to be delayed in comparison with the social
optimum. Therefore, the aim should be to keep the same type of equilibrium
(sequential) but increase thresholds. It may be checked that for the values of
the first row of Tab.4, we are in the situation where increases in r induce to
delay investment. Therefore, it is confirmed that in order to approach the so-
cial optimal timing it is optimal to set r = 0. Starting from the benchmark
in Tab.3, then, what we may try to do is to increase price for δ = 0.01. The
best one can do turns out to be setting p = 3.1. The limit to the increase in
this case is connected to the effect on K2. If p is raised above that level, then
K2 falls below D2 and the equilibrium becomes simultaneous. As it may be
observed, the effect on the thresholds of raising p from 2.8 to 3.1 is almost neg-
ligible. In fact, as it is intuitive, when the elasticity is very low, the possibility
to impact on the timing is also limited, simply because the advantage in terms
of additional patients obtainable by investing in the new technology is small.
Hence, even setting p = 3.1 and r = 0, cP is lower than c1 and cF is lower than
c2. The message seems to be that the best payment scheme for low elasticity
treatments is completely prospective, but even so providers tend to invest later
than it would be socially desirable.
After the first increase of delta (second row), the objective is still to raise the
competitive thresholds, which are lower than the respective social optimal for
given values of the other parameters. If for the new value of the elasticity the
price were kept equal to 3.1, we would end up again in a simultaneous equi-
librium. The highest price that ensures a sequential equilibrium is p = 2.8.
The situation, though, is still one where increases in r would reduce the thresh-
old. Therefore, r is again set equal to zero. Even so, however, the competitive
thresholds are still lower than the social ones. However, the gaps c1 − cP and
c2 − cF are reduced in comparison with the first row, and hence the timing of
investment may be considered somehow closer to the social optimum.
For δ = 0.24, if all the other parameter values are left unchanged, cP and cF

are still respectively lower than c1 and c2 and the equilibrium becomes simul-
taneous, which implies a delayed investment, that is the opposite of what we
are looking for. By reducing p to a level such that the equilibrium is again
sequential, we end up again in a situation where the objective to anticipate the
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investment requires to set r = 0. The highest value of p that allows a sequential
equilibrium is p = 2.6.
The following increase in delta (δ = 0.36) leads to a situation where it would be
socially optimal to have investment by one provider only. Hence, the aim is to
set up a payment scheme that ensures this characteristic and induces investment
by the leader as close as possible to the first investment in the social perspective.
Let us start assuming that r may be kept equal to zero. It is easily checked
that setting p equal to the lowest value such that p ≥ (1− r)c0, the follower has
still an incentive to invest. In the simulation, at this point we are in a situation
where increasing r would increase the threshold. What we try to do then is
to reduce p further in order to reach the situation where this is not the case.
At this point, we need to increase r in order to satisfy the non negative profit
condition. But now, this will further reduce the follower’s threshold. Setting
p = 1.5 and r = 0.5, we induce no investment by the follower and a threshold for
the leader that is surprisingly close to the social optimum. Since in this case the
optimal simultaneous threshold is also negative, and therefore D2 = 0, whereas
K2 is positive, there actually exists an incentive to preemption. Therefore, it is
checked that the equilibrium is also sequential.
In the last row, r is left unchanged. The increase in elasticity allows a further
reduction in p. Again, the preemption threshold is quite close to the social op-
timum.
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