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Abstract

In this paper we analyze a time series of daily average prices in the Italian
electricity market, which started to operate as a Pool in April 2004. Our
objective is to model the high degree of autocorrelation and the multiple
seasonalities in electricity prices. We use periodic time series models with
GARCH disturbances and leptokurtic distributions and compare their
performance with more classical ARMA-GARCH processes. The within-
vear seasonal variation is modelled using the low-frequency components of
physical quantities, which are very regular throughout the sample. Our
results reveal that much of the variability in the price series is explained by
the interactions between deterministic multiple seasonalities. Periodic AR-
GARCH models seem to perform quite well in mimicking the features of the
stochastic part of the price process.
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Introduction

Electricity prices as they are now determined in regulated (generally, Pool) markets, where
private operators have replaced previously well established public enterprises, present specific
behavioural characteristics. Prices in these Pool markets differ from the previous prices which
were fixed by governments or public agencies. Despite the very limited storability and
transportability of electricity, government-determined prices incorporated little uncertainty in
their dynamics as they were generally capped by the imposition of price ceilings, resulting
from the implementation of welfare-improving tariff policies. Market determined electricity
prices, on the other hand, are strongly affected by the impossibility to arbitrage between time

and space, and consequently are very volatile.



Time series of current electricity prices differ quite substantially from prices determined in the
markets for financial assets or other type of commodities, since electricity cannot be treated
like a stock. Hence, electricity prices have specific and somewhat unique characteristics (e.g.
strong seasonalities and mean reversion), which in the recent past was the motivation for
using time series modelling to study the specific features of their time patterns and to evaluate
how prices are affected by temporal demand-supply imbalances, seasonality, transmission
congestion and, to a lesser extent, by the features of the mechanism that generates the data
(type of auction employed, price rule, degree of market concentration, etc.).

In Italy the privatization of the former public (quasi-) monopolist eventually led to the
creation of an electricity Pool with some specific legal characteristics such as the presence on
the demand side of a single buyer and which began operations in April 2004.

In this paper we try to describe the price dynamics of the Italian Pool and compare our
findings with those obtained from analysis of other European markets. We also suggest a new
methodology for dealing with multiple seasonalities that may prove useful for future
econometric analysis of electricity prices. The stochastic part of the price evolution is
modelled through periodic AR-GARCH processes, which are able to capture the different
memories of each day of the week of the past.

Our results can be exploited directly by companies and traders for forecasting and for
improving their bidding strategies, by regulators for identifying possible anomalous pricing
behaviours, and, indirectly, by hedgers for the pricing of energy derivatives.

The paper is organized as follows. We first discuss the main characteristics of some European
electricity markets, including the Italian Pool, for which data availability permits time series
analysis. We emphasize differences in the organization and regulation of the markets as well
as in their production structure (specifically, electricity generation), which might be important
for explaining differences in the econometric results. We then review the existing econometric
literature. The empirical analysis starts with a description of the general characteristics of the
Italian data and concentrates on modelling the deterministic component of the data. We go on
to describe and justify the choice of stochastic models and methods employed to account for
the dynamics in the Italian prices. The paper concludes by presenting the results accompanied

by some detailed comments.



The electricity markets in Italy and other European countries

The Italian electricity market (IPEX) is organized as a Pool system, managed by a market
operator (GME), that collects the bids, determines the merit order for the dispatch of
electricity and is responsible for all auxiliary services. The Pool, initially planned to come into
force in January 2001, actually began operations at the end of March 2004, as a one-side
market. A single buyer, constituted in 1999, was responsible for guaranteeing the supply of
electricity to a set of captive customers. Demand-side bidding was introduced in January
2005.

IPEX was the most recent Pool market to be created in Europe. Following the establishment
in 1991 of the England and Wales (E&W) Electricity Pool, as a result of the liberalization of
the British electricity market, competitive electricity markets have been organized in many
European markets: [Nord Pool], Austria, France, Germany, Netherlands, Spain. The key
features of most of these changes, including the Italian Pool market, were the privatization
and restructuring of the existing vertically integrated monopolistic supplier. The second step
was to organize the exchange of physical electricity in competitive wholesale spot markets
through  auctions. Competition was introduced at the retail level while
transmission/distribution, which were still considered natural monopolies, remained under
government regulation. This reorganization of the industry led to a separation of potentially
competitive elements from natural monopolies.

The wholesale exchange of electricity poses some problems for regulators in relation to
market architecture and design. First a decision must be made about whether to opt for a
centralized Pool or for a decentralized market. In the former arrangement, all the electricity is
allocated through the Pool; thus bilateral contracts are not allowed. All operators, both on the
demand and the supply sides, submit hourly or half-hourly bids which are matched by a
procedure that minimizes the cost of despatch. A decentralized electricity market such as
NETA (England) or the Californian market, on the other hand, is organized as a series of
voluntary forward and spot markets and bilateral contracting is allowed. The advantages of a
Pool over a decentralized market are that demand and supply are continuously matched so
that all coordination problems disappear. Advocates of the decentralized market structure,
however, emphasize that the Pool may be affected by strategic bidding on the part of those
operators with market power and, as a consequence, Pool prices do not generally reveal costs.

Whilst theoretically this issue is still being debated, at an empirical level we find many



examples, especially in Europe, of non-mandatory electricity Pools, where bilateral contracts
are allowed. Such arrangements are probably motivated by the desire to capture the
advantages of both types of schemes.

Electricity Pools work as multi-unit uniform price auctions: operators submit price/quantity
offers, which are aggregated by the market operator in order to form a demand (where
demand side bidding is allowed) and a supply curve. The equilibrium price and quantity are
then determined by the usual crossing condition and all despatched producers receive the
same System Marginal Price (SMP), equal to the bid made by the marginal unit in operation.
This means that a) 24 or 48 auctions are held the day before delivery, one for each hour or
half hour of the following day; b) all units that have been selected by the auction receive the
SMP for the whole quantity they sell.

A characteristic that is common to the European electricity exchanges is the existence of
demand side bidding. However, the opening of the bidding process to demand has not
proceeded at the same pace in all countries. As already mentioned, in the Italian market, for
instance, demand side bidding for a small portion of eligible consumers was only introduced

from Ist January 2005.However, in line with the European Directive 2003/54/EC, all

customers must be considered to be eligible by 1 N July 2007. This means that on that date all
consumers ought to be able to buy electricity directly in the day-ahead market.

In all European countries the electricity Pool market is managed by a market operator (MO,
auctioneer), who collects bids and organizes the dispatch of units in a cost minimizing way.
This auction-based dispatching does not take transmission conditions into account and so
congestion may occur. The main features of the mechanisms implemented to manage
congestion have changed in favour of a system compatible with bid-price-based optimization.
When congestion occurs in the transmission line the market operator and the Transmission
System Operators (TSO) try to relieve it at the minimum possible cost, in a market based way.
The electricity markets in Europe differ significantly in terms of their underlying production
structure. This is significant since issues related to the market design become less severe
when the industry is per se more competitive. It is well known that electricity can be
generated in a variety of ways and using different types of inputs, which may be either
renewable or non-renewable. The cost of the unit of energy supplied depends upon the
technology and this influences the shape of the marginal cost function of the system and,
hence, the system marginal price.

The productive mix of the electricity generating industry is thought to influence the market



power of firms, their strategic behaviour and, finally, the price of energy. Nord Pool
comprises countries in which a high percentage of production comes from hydro resources
(56.7%) and in Austria this proportion is 69% of total production. Spain and France have
similar proportions (11.8% and 11% respectively) of hydroelectric production, but France has
a very high percentage of nuclear production (78%). The Netherlands and Germany account
for only a small quota of hydroelectric production (0.1% and 4.2% respectively). France and
Germany have recently installed wind plants. In Italy 13% of total gross production of
electricity is obtained from hydro sources and around 80% from oil, gas and solid sources.
The Nordic area appears to have a more competitive power market and also the highest
percentage of hydro plants installed. It is not surprising then, that prices in Finland, Sweden
and Norway are well below the EU average. The French market is characterized by a high
level of concentration (EDF has 90% share of the market) and by strong consumer protection,
which results in low regulated tariffs. Power Next accounts for a small proportion of the total
energy consumed (low level of liquidity, about 3%). This situation is similar in Germany,
where only 11% of energy is traded on EEX. All the other European markets, including Italy,
appear to be fairly concentrated and have a low liquidity share.

We can conclude that, across Europe, the level of concentration in generation is still high and
this creates scope for market power and the ability to influence prices. The strong position of
the incumbent operators has not been eroded in any significant way by investments in
generation of new entrants. New generation assets normally entail significant investment
costs, which are seen as a major barrier to entry. Uncertainties (high price volatility)
associated with the power exchanges have also been seen as barriers to entry. Generation is a
key issue for competition in the European electricity markets. The generators, due to the
characteristics of the electricity market (the non-storability of electricity, the high inelasticity
of demand, the very wide spectrum of costs of production and prices equal to the highest offer
made on the power exchanges), are able to influence prices through the use of the generation
capacity available to them either because they are indispensable or by forcing recourse to
more expensive sources of supply by a withdrawal of capacity. Withdrawal of capacity is
profitable if the cost of not producing is more than compensated for by the increase in SMP.
A large number of low-cost plants adopt this strategy. In the case that they are indispensable
for meeting demand, it is possible to raise SMP even with a relatively small portfolio of
plants, depending on other offer constraints (e.g. the location of units). Therefore, the

behaviour of generators can impact significantly on the level of prices, even at low levels of



concentration.

The existing literature

The modifications to the organisation of electricity markets have stimulated empirical studies
of electricity prices both inside and outside of Europe.

Bhanot (2000) analyzes electric power prices in 12 Californian regional markets. The
objective is to characterize and explain the high degree of autocorrelation and seasonality in
power prices and address issues that are pertinent to the valuation and hedging of power-
based financial contracts. He shows that price behaviour changes with each regional market,
so that a firm that seeks to price or hedge power-based contracts must use instruments from
the region in which it operates.

Escribano et al. (2002) use average daily prices for several markets (Nord Pool, Argentina,
Victoria, New Zealand, Spain) and propose a general and flexible model that allows for
deterministic seasonality, mean reversion, jumps and conditional heteroscedasticity. They use
six nested versions of their model to analyze price behaviour in the different markets. Their
results indicate that an AR(1)-GARCH(1,1) with jumps performs better than other versions.
Lucia and Schwartz (2002) present a model, which permits the definition of analytical
formulae for derivative (futures) pricing. They employ dummy variables and sinusoids to deal
with the seasonalities and an AR(1) for the autocorrelation structure.

Wilkinson and Winsen (2002) use Australian data to conduct a non-parametric test for the
equality of peak and off-peak prices and for log-normality. They obtain mixed evidence: the
null hypothesis of equal day effects and log-normality is rejected for some sub-sample periods
and not for others.

Koopman at al. (2005) using European data, argue that there is no need to model conditional
variance, when the conditional expectation of the price time series is properly modelled by
means of periodic autoregressive (PAR) processes. They model seasonalities using sinusoids
and weekday dummies. A PAR(1) model seems to be sufficient to fit the stochastic part of
their data. They find evidence of mean reversion in the stochastic part of the model and
periodic long memory in the North Pool prices.

Knittel and Roberts (2005) study the distributional and temporal properties of California
prices, using several common asset price specifications (as well as other less conventional

models). Results reveal several specific characteristics unique to electricity prices. They use



zonal hourly electricity prices (Euro/MWh), when there is a separate market price in each
zone. However, with no congestion arbitrage across zones this drives the price to a
converging level. The degree of divergence then is an indicator of no arbitrage opportunities
and when a high degree of correlation across “zonal” prices exists, then just one zone or the
national time series of prices can be used.

Fabra and Toro (2005) use a Markov-Switching model on Spanish data to investigate
collusive vs. cooperative behaviour of bidders.

The above literature generally adopts a sort of two-step procedure. A preliminary data
analysis is conducted; inspection of the data reveal the main characteristics of the dynamics of
the electricity prices. On the basis of this examination it is invariably clear that the model
applied in the second step of the analysis should integrate multiple seasonalities and reflect
phenomena such as short (sometimes long) memory, mean reversion, high price-dependent
volatility and leptokurtosis. As discussed above, methods to deal with seasonalities range
from the use of dummy variables to the application of sinusoids at low seasonal frequencies
(usually just the dominant 277365 and the first harmonic 477/365).

In what follows we discuss the results from some previous studies by clustering them into sets

of specific issues.

Seasonality

Real-time balancing and dependency on cyclical demand impose several different seasonal
patterns on electricity prices (within day, week, year) almost everywhere. Deidersen and
Triick (2002) study price series for Germany, New Zealand and Spain and report a strong
intra-day pattern with a peak around midday. Moreover, they find that monthly mean prices
are higher during daytime, and weekly seasonal patterns underline the presence of weekend
effects. Annual seasonality is also present, with winter prices always higher than prices
recorded in other seasons. Also Knittel and Roberts (2005) find that Californian electricity
prices show intra-day seasonality and a “summer” (rather than a winter) effect, while Bhanot
(2000), using US wholesale transaction prices recorded from 1* January 1995 to 1" June 1998
show that the seasonal means for peak and off-peak prices exhibit significant variations across

the 12 months and across delivery points.



Volatility

Storage and transmission problems and the need for markets to be balanced in real time are
responsible for an unusually high volatility. All the above reported empirical studies
emphasize that there is a positive correlation between the standard deviation and the mean of
the price process, making volatility dependent on the price level. Furthermore, many time
series exhibit some volatility clustering making models for conditional heteroscedasticity
opportune. When demand approaches and exceeds the limits of the system’s generation

capacity, prices are high and more volatile. Many authors model this using log-prices.

Mean reversion

By mean reversion we mean the absence of stochastic trends or martingale-like behaviour.
This is a distinctive feature of electricity prices with respect to other commodity prices.
Electricity prices do not behave like martingales, and the non-deterministic part of the data
generating process does not seem to contain unit roots (e.g. no random walk like behaviour).
When hourly prices rise they have to move downwards again in a relatively short time. It is
thought that they oscillate around some “equilibrium” mean (possibly deterministically time
varying). This makes a crucial difference with respect to other financial markets. The speed of
reversion is also quite informative in regulatory terms, since it reveals the time needed by the
supply side of the market to react to unanticipated events, or the time needed for the event to
be “absorbed” by the system. The mean reverting nature of electricity prices is generally
explained by market fundamentals. Mean reversion, a deterministic trend, and multiple
seasonalities are integrated in virtually all the model proposed by the cited authors, where the
price (or log-price) process is additively decomposed into a deterministic and a mean-

reverting stochastic component.
Spikes and jumps

These are attributed to sudden and strong increases in demand, when supply is at the limit of
generation capacity or there is an unexpected break down in large assets. Depending on
demand and supply conditions spikes can also be negative. According to Deidersen and Triick
(2002) they are less frequent in market with high levels of hydropower generation.
Nevertheless, spikes are quite pervasive and it is their presence that impairs the forecasting

properties of the models described in the literature. These extreme values can be modelled in



discrete time by using a stochastic process with leptokurtic marginal distributions, or in
continuous time by introducing jumps in the process. A somewhat different approach is that
of Bystrom (2005), who models extreme price changes in the Nord Pool and estimates tail
quantiles by filtering the return series and then applying an extreme value theory model to the
residuals. As in other studies, the performance of the estimates improves when the model

explicitly relates the volatility of the data to the within-year seasonal trends.

Preliminary analysis of the Italian data

In this section' we study electricity prices recorded in Italy from Ist April 2004 to 15"
January 2006. The data are sampled hourly, but in this study we use daily means®.

The daily prices are depicted in Figure 1 together with the total demand for electricity (daily
means as well).

Figure 1 here

Figure 1. Daily means of hourly prices (line, unit = Euros per MWh) and of hourly demand (dots, unit =

MWh x 1000) for electricity

The strong within-week seasonality of the prices is clearly due to the seasonality present in
electricity consumption. Indeed, the unitary price of electricity changes according to the

volume to be produced, in the pattern depicted roughly in Figure 2.

Figure 2 here
Figure 2. Scatter plot of electricity prices and demand with non parametric loess fit.

Figures 1 and 3 clear show that in 2004 prices were significantly more volatile than in
subsequent years. This may be ascribed to a learning phase that traders underwent and to the
regulatory changes that took place in January 2005.In addition, in the first 10-15 days of 2005
there was an abrupt increase in prices not supported by a corresponding rise in demand. This
episode provoked an inquiry by the antitrust authority. The remainder of the time series shows

greater regularity.

'The computations in this section were carried out using EViews 4 (regressions and low-pass filtering through
the state-space object), GiveWin 2 (kernel density estimates and sample autocorrelations), PcGive 10
(descriptive statistics and normality test).

*In most of the existing literature only daily means are considered.



Figure 3 here
Figure 3. Weekly time series of the seven days.

Table 1 reports some descriptive statistics, normality tests and graphs for the weekly time
series for each day. It is interesting that Tuesday-Friday exhibit very similar behaviour (see
Figure 3). From the normality tests (a modified version of the Jarque-Bera statistic as in
Doornick and Hansen (1994)), it could be assumed that the Monday-Saturday data are
normal, but the kernel estimates suggest the presence of multi-modality for all densities. This
is due to the presence of seasonality within the year, and a possible trend, which make the
data generating process non-stationary and the marginal densities not well-defined. A further
problem might be the presence of weekday holidays, when the price of electricity is generally
very low, thus producing negative skewness.

From the sample autocorrelation function (ACF) reported in Table 1, there is evidence of a
high persistence of linear memory at weekly lags. This suggests three things: i) the presence
of a deterministic within-week seasonality; ii) the presence of seven seasonal unit roots; iii)
the presence of multiple periodic unit roots (Franses and Paap , 2004, ch.4). In the literature
only the first hypothesis has been considered.

Table 1 here

Table 1. Descriptive statistics, normality tests for each day

In order to deal with within-year seasonality the cited authors used monthly dummies or
sinusoids with frequencies 277365 and 47/365. Since this seasonality is due to the low-
frequency components in electricity demand, and these components tend to be very regular
across years, it is sensible to apply them directly rather than approximating for them.

By observing the electricity demand series in Figure 1 it can be seen that there is a higher-
than-average consumption in winter and summer with sudden decreases in the two main
vacation periods: Christmas holidays (in Italy typically 24™ December 6" January) and
August. In order to successfully extract the features described, we designed a low-pass filter
with two different cut-off frequencies: a lower one for “normal” periods and higher one for
vacation times. As a result, the extracted time series is rather smooth most of the time, but it
does not average out the negative peaks in the two vacation times. The slight trend in the
extracted component of consumption was eliminated by imposing the same value for 31%

December 2004 and 31* December 2005 and adjusting all other daily values by linear

10



discounting. Technical details related to the filtering are reported in the Appendix. The low-
pass filtered series is depicted in Figure 4.

Figure 4 here
Figure 4. Band-pass filtered electricity demand of years 2005 (line) and 2004 (dots).

If we assume, at least for the moment, that the price data are generated by the sum of a
deterministic component (seasonalities and trend) and a (well behaved) stationary process, the
least square estimates of the regression of the prices on the deterministic components are
consistent and asymptotically normal (CAN) and the asymptotic covariance matrix of the
estimators may be consistently estimated (see for example Hamilton, 1994, pp. 282-283).

We estimated the following nested regressions:
7
y, =T+ 6, D, +65,-8,+7, (1)
i=1

yz:T't"'i(&o,i'l)i,z"'é‘l,i'l)' S]'HL (2)

it"t
i=1

Y :T't"‘i(&o,i'l)i,z +51,i'D' S
i1

itSt

+8,,-D,S] |+7, 3)

it

where D,, is the daily dummy of day i=1,..,7 (1=Monday, 7=Sunday), S, is the
seasonal variable of Figure 4 and 7, is a stationary process with absolutely summable
covariances. In equation (1) the within-year seasonality (S,) enters linearly and cannot
influence the within-week seasonality, in equation (2) S, enters linearly and influences the
within-week seasonality, while in equation (3) S, enters quadratically and influences the

within-week seasonality. Table 2 reports summary statistics for the three regression models
and tests for the validity of the constraints imposing the equality of all the parameters relative

to the days Tuesday-Friday.
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Whole sample eq. (1) eq.(2) constr eq.(3) constr

R? 0.67 068 0.68 0.70 0.69
S.E. of Regression 793 7.85 7.83 7.68  7.65
LogLik -2281 -2272 -2273 -2254 -2255
BIC 7.06 7.09 7.03 7.10 7.02
Wald Test Sig” 0.52 0.55
Feb2005-Jan2006  eq. (1) eq.(2) constr eq.(3) constr
R? 0.84 087 0.87 092 092
S.E. of Regression 497 452 451 349 348
LogLik -1050 -1014 -1016 -920 -924
BIC 6.17 6.06 598 564 551
Wald Test Sig” 0.32 0.23

" Wald test for the equality of all the parameters relative to Tuesday-Friday.

Table 2. Diagnostics for the regression models of equations (1)-(3).

The models have been fitted to the whole sample and to the sub-sample 1% February 2005
through 15" January 2006. In both samples the constrained model (3) outperforms the others
according to the Schwartz’ Bayesian Information Criterion. It is striking that the performance
of all the models drastically worsens when the whole sample is considered: for the best fitting
model, the standard error of regression more than doubles, while the R*> is 20% smaller.
These and other considerations lead us to conclude that omitting the first ten months of

observations should produce more accurate models and predictions.

Stochastic models for daily electricity prices

In this section’ we formulate and test a set of models for the Italian price time series. These
models encompass the deterministic and the stochastic components, in order to incorporate
the memory present in the regression residuals, which plays an important role in short term

forecasting and in derivative pricing.

Figure 5 here
Figure 5. ACF and PACEF of regression errors of model (3) with constrains.

The sample’s ACF and PACF functions show the presence of linear memory both in the

3The computations in this section were carried out using EViews 4 (conditional ML estimates of the Reg-PAR-
GARCH models through the log/ object) and R 2.1.0 with the pear package (sample periodic autocorrelations
and partial autocorrelations).
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errors and the squared errors, suggesting the opportunity of ARMA-GARCH models. Maybe
curiously, the model in this family that seems to fit the data best is the constrained regression

(3) with AR(1,6)-GARCH(1,1) errors:
n, = ¢177t—1 + ¢677t76 +0,z, 4)

O'zz =0+ ao-tz—lztz—l + ﬂo-tz—l (5)

with z, i.i.d. standard normal process.

Another interesting class of models, that could fit the different characteristics of the daily
prices better than simple ARMA is that of periodic ARMA-GARCH®. A periodic ARMA is
an ARMA model with periodicity (with seasons). For example a PARMA(1,1) with period 7
1s

W=t ¢1,z (yt—l - /ut—l) +o0,z, + gl,tat—lzt—l (6)

with z, 1.i.d. and

M =ty $7=9, 0,,=0, 0,,=0 (7)

A periodic ARMA is a non-stationary model since mean, variance and ARMA filter depend
on time. Nevertheless a PARMA model for daily data has a VARMA representation for the
vector of the seven weekly time series. If the VARMA representation has a causal stationary
solution, then the process is said to be periodically stationary. For details on periodic time
series models refer to the monograph of Franses and Paap (2004) and to the articles of Jones
and Brelsford (1967), Pagano (1978), Tiao and Grupe (1980) and Vecchia and Ballerini
(1991).

A PARMA model may be enriched with a periodic GARCH-type structure Bollerslev and

Ghysels (1994) by opportunely redefining o, in equation (6). From our analyses we

concluded that a non-periodic GARCH-type process should suffice. By looking at the vast
GARCH library, we picked the EGARCH of Nelson (1991) since it is easier to adapt to a
periodically unconditional variance, it allows for asymmetry (which implies skewness in the

unconditional distribution) and does not impose constraints on the parameters:

logo} =logs;+a(z | —E|z_ )+ Az + Bogo., —logs.), (8)

*The first (and so far only) application of a PAR model to daily electricity prices was carried out by [12].
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with 5t2+7:5t2-
The identification of the order of a PARMA model may be based on the periodic ACF and
PACF functions. The seven periodic autocorrelation functions of the periodically stationary

process of period 7, x,, are defined by

7;(k) :E(xt —H X _/ut—kj
(o}

/ Ok

with y, . (k)=y,(k). The periodic ACF and PACF are straightforward generalizations of non-

periodic ones (for definitions and algorithms refer to Sakai, 1982). Figure 6 depicts the

sample ACF and PACEF of the estimated regression (3) errors.

Figure 6 here

Figure 6. Sample periodic ACF (bar) and PACF (line) of the estimated regression (3) errors.

It is interesting to observe how the linear memory changes according to the day of the week.,
Particularly interesting is the high lag 3 partial autocorrelation of Monday (for which the
preceding Friday carries most of the information), and the scant influence of previous days on
Saturday. The considerable variation in the behaviour of the periodic autocorrelation

functions is the main justification for the use of PARMA models.

Estimation results

The process of finding a good model for the Italian data was incremental: we began with
simple models and added complexity gradually, in order to match features of the data that

appeared during the modelling process and had not been included in previous versions.

. M1  Reg-AR(1,6)-GARCH(L,1), z, ~ N(0,1);
. M2  Reg-PAR(1), z, ~ N(0,1);

. M3 Reg-PAR(1), z, ~ GED?;

>The Generalized Error Distribution (GED) (sometimes referred to as Exponential Power Distribution) has a

shape parameter, 7, that for 7 = 2 makes it a Normal distribution, for 7 € (0, 2) makes it leptokurtic and for
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. M4  Reg-PAR(S), z, ~ GED with

Mon: n,=¢n_ +¢n,+0:z

Tue: M =8¢l +0,z,
Wed: n = ¢1,377;-1 +0;5z,
Thu: M =Pl +04z,
Fri:  m,=¢n,,+$,51, s+ 05z,
Sat: n, = ¢1,6771—1 +0,z,
Sun: n =GN +0,2;

. M5  like Mod4. but with EGARCH(1,1) of equation (8).

Table 3 reports some goodness-of-fit statistics and diagnostic tests for the five models plus a

constrained version of M5 (the insignificant parameters and the insignificantly different

parameters are constrained).

MI. M2. M3. M4. M5 MSc

LogLik -834 -840 -813 -804 -792 -798
N. of Coefs. 15 27 28 30 33 23

AIC 488 497 482 478 473 471

BIC 508 527 513 511 5.09 496

010) Sig. 0.229 0.007 0.000 0.000 0.005 0.005

0(10)* Sig. 0.855 0.012 0.221 0.724 0.989 0.989

0O(10) is the lag 10 Box-Lijung statistics on the standardized residulas.
0(10)* is the lag 10 Box-Lijung statistics on the squared standardized residuals.

Table 3. Goodness-of-fit statistics of the various models.

Model M5., particularly in its constrained version, seems to outperform the others, although
the simple AR-GARCH works reasonably well, if one is led by Schwartz’ BIC. Table 4

reports the constrained estimates. The asymmetry parameter of the EGARCH was eliminated

since it was not significant.

re (, OO) turns it into a platokurtic distribution (cfr. [14]). The GED we used has zero mean and unit variance.
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Coefficient Std.Error t-Ratio Prob.

4, 0.251 0.098  2.555 0.011
br=d.=ds 0776 0047 16.504 0.000
b 0.985  0.073 13.475 0.000

4.1 0.827  0.103 8034 0.000

4, 0.211 0.075  2.823 0.005

b, 0388  0.073 5288 0.000

a 0.361 0.101  3.561 0.000

Vi 0.695  0.150  4.621 0.000

o =..=0, 1349 0368  3.662 0.000
GED’s r 0.925  0.082 _ 11.296 0.000

Table 4. Estimates of model MS. constrained (only the parameters of the stochastic part are reported).

The results from this application can be contrasted with those reported by the many authors
who studied other European Pools. Daily equilibrium prices in Italy were found by us to be
high, non normally distributed and leptokurtic. This shape is similar to that found for the Nord
Pool by both Bystrom (2005) and Lucia and Schwartz (2002), and by Escribano et al. (2002)
for the Spanish Pool. Mean reversion® is another characteristic of the Italian Pool and its
speed is more similar to that found in Spain by Escribano et al. (2002) than that revealed by
several authors for the Nord Pool. Differences with respect to Spain and Nord Pool lie in the
seasonal volatility of the Italian data as well as in the jump process, possibly due to the
differences in the structure of production capacity. In terms of seasonality, Italian data display
some peculiar characteristics mainly due to the high concentration of vacations in August and
over Christmas, which accounted for in an original way.

As in Koopman et al. (2005) we found evidence of periodicity in the autoregressive
coefficients: the prices of the weekdays correlate very weakly with previous weekend prices
and the prices over weekends are not correlated with previous weekday prices. Koopman et
al. (2005) found long memory in Nord Pool prices, but this feature cannot be inferred from
the sample periodic ACF of Italian prices (cfr. Figure 6).

Thus, some features that determine Italian price behaviour are market specific, while some are

%It is hard to believe that the price of oil, which follows an integrated process, does not affect the price of
electricity. If this is true, mean reversion is not a sensible hypothesis. What we may affirm is that for the limited
length of our time series, the (possible) underlying unit root process takes account of a negligible degree of
variance with respect to other components: seasonalities and short memory noise, in particular. A better
description of this might be local mean reversion.
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common to other markets. This implies that perspective comparative works should
incorporate into the analysis specific aspects of the electricity generation/demand structure,
such as differences in technological and climatic conditions, as well as some common

elements such as oil price, that affect local markets in different ways.

Conclusion

The analysis of the Italian electricity prices carried out in this study has enabled a good
understanding of the most relevant features of the data. The first finding is the significant
changes to the data generating process from mid January 2005. This may be due to the
learning time needed by companies and traders involved and by the change in the regulation
that took place at that time.

Another peculiarity of Italian prices are the drops that occur over the Christmas and summer
vacations, which render the use of few sinusoids or monthly dummies unfit for modelling
within-year seasonality. An original methodology to deal with this issue was developed. We
also modelled the interaction between within-year seasonality within-week seasonality.

A slow but significant (increasing) linear trend in prices was noted and fitted. The reasons for
this increasing price trend may lie in the accompanying growth in the prices of hydrocarbon-
based energy sources.

Leptokurtic PAR-GARCH models seem most appropriate to show the different amount of
memory of past observations that each weekday carries, as well as the presence of spikes and
some form of volatility clustering.

Although the limited length of the price time series raises some questions, the models

developed in this paper seem to perform quite well.

Appendix

In order to filter the low frequencies of the daily time series of electricity demand, we
designed a partially model-based low-pass filter with time varying cut-off frequency. We used

the model

ve=u+y"+y 4y 1, ©)
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M=+ P (10)
B,=pB_+¢, (11)

(i) () ()
Vi Vi K'tj

with @, = /-277, j=123, & ~(0,07), { ~(0,07), &, &"~(0,0;). p, captures the

COsS @, sina)j

—sina)]. CoS®;

low frequency movements in which we are interested, the y,’s take care of the within-week
seasonality and ¢, is white noise. Since the cut-off frequency of the low-pass filter for
extracting 4 1s determined by the signal-to-noise ratio p = 0'2/ o, we fixed it to 1600 for

“normal” days and to 100 for Christmas and summer vacation times (24 December-6 January
and July-September). The other unknown variances have been estimated by ML. The filtered
series was produced by the Kalman smoother.

The gain of the filter is given by

[p(Z —2cos )’ r

G(2) = —
1+ p(2—-2c0s A)* | +S(4)
where
2 2!
S(/I)zi . 4(cos A —cosw; ) :
= 1-2cosw,; cos A +cos” @,

p 1s defined as above, r is the signal-to-noise ratio relative to the seasonal component (the
estimated value i1s 48.660.207, meaning that the weekly seasonality is practically time-

invariant) and @, =27 /7.

The resulting cutoff frequency for normal times is 0.057 corresponding to a period of circa

40 days. The cutoff frequency for vacation days is 0.107 (ca. 20 days).
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Figure 1. Daily means of hourly prices (line, unit = Eurcs per MWh) and of hourly
demand {dots, unit = MWh <1000} for electricity
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Figure 2. Scatter plot of electricity prices and demand with non parametric loess
fit.

Figure 3. Weekly time series of the seven days.
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Table I. Descriptive statistics, normality tests and kernel density estimates (top
graph) for each day and sample ACF of the whole time series (bottom graph].

mon tue wed thu fri sat sUn
IMeans 58.04 6196 6224 6284 6194 4666  37.93
St.Dev. 10.92 10.06 11.42 11.08 11.17 T.53 ®.7h
Sleew 0487 -0.113 -0.488 -0.054 -0.363  -0.073 0 -1.334
Kurt 20977 2449 3,220 25095 3804 3643 T.453
Mlin 20.06 3516 2468 32,50 25.87 21.14 1.21
Ilaoc 20.26 5691 84.25 90.38 91.49 6909 5R.TH
Norm (sig) 0.103 0500 0141 0881 0099 0166  0.000
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Figure 4. Band-pass filtered electricity demand of years 2005 (line) and 2004 (dots).
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Figure 6. Sample periodic ACF (bar) and PACF (line) of the estimated regression
(3) errors.
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