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Abstract

This paper compares the optimal linear income tax structure in a welfarist set-
ting with the one derived in a non welfarist approach. In order to have a flexible
framework able to encompass both the poverty minimisation and the social wel-
fare maximisation objectives, a censored social welfare function, in which only
variations in incomes below the poverty line affect social welfare, is used. Adopt-
ing the main assumptions of the model developed by Atkinson (1973), conditions
under which the poverty-minimising marginal tax rate is higher than the welfare-
maximising one are shown. However, we find that the opposite case may occur
under specific conditions on income distribution. In particular, the redistribution
resulting from the maximisation of an utilitarian welfare function is higher than
the one obtained pursuing a poverty alleviation goal when the poor are close
enough to the poverty line.



1 Introduction

The literature on optimal income taxation, which began with the seminal paper
of Mirrlees (1971), characterises the optimal tax schedule that satisfies equity
goals, taking into account the disincentive effects of taxation on labour effort.
Following the tradition in welfare economics, society’s values about equity and
fairness are embodied in a social welfare function, which depends solely on the
individuals’ utility. Social preferences are expressed through the relative weights
assigned to different agents’ well-being and range from giving equal weight to all
individuals to only being concerned with the welfare of the most disadvantaged
person. According to this perspective, poverty matters only to the extent that
redistributive goals imply that a higher weight is given to additional income going
to those on lower incomes than on higher incomes. There is no concern for poverty
reduction as a distinct social objective. Since it evaluates the impact of different
fiscal policies only on social welfare, the literature on optimal income taxation is
commonly defined as ”welfarist”.
This approach has been criticized on several grounds.
A first line of criticism is developed within the policy debate around fiscal

reforms. While the optimal tax literature takes into account the values of both
net income and leisure in individual utility functions in determining the optimal
tax schedule, the policy debate gives little weight to the disutility the poor may
experience from work. Policy discussion generally focuses only on incomes. A
view not assigning a positive value to leisure of the poor may lead to optimal
marginal tax rates that are lower than the welfarist ones, so to incentive labour
effort1.
From a theoretical point of view, the welfarist formulation gives a too narrow

perspective by assuming that the objectives of policy can be fully represented
by a function based solely on individual well-being. Other ethical principles
may be deemed as valuable in judging different policy options. As Sen (1982)
argues, welfarism is ”informationally restrictive” since it rejects any information
unrelated to individual utility. Non-utility information, such as the possibility
to exercise one’s rights, the freedom to express one’s view or the right to be
non-exploited or discriminated, on the contrary, is necessary for social welfare
judgements and objectives.

”Indeed, some moral principles are formulated without making any use of util-
ity information at all, e. g., ”equal pay for equal work”, ”non-exploitation”, etc.,

1”While the conventional optimal tax literature takes into account the values of both net
income and leisure in the individual welfare functions, the policy discussion focusses almost ex-
clusively on incomes... Even when work incentives are discussed explicitly it is the implications
for government revenue and individual incomes that are paramount; little weight is typically
given to such disutility as the poor experience from working.” (Kanbur, Keen e Tuomala [1994],
p.1615-1616)
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and it is easy to demonstrate that these principles would conflict with welfarism,
which makes the utility information decisive... In its uncompromising rejection
of the relevance of non-utility information welfarism is indeed a very limiting
approach.2” [Sen (1982), p.340]

Alternative approaches using non-utility information have been developed fol-
lowing Sen’s suggestions. These approaches are usually referred to as ”nonwel-
farist”. Among others, in a series of papers, Kanbur, Keen and Tuomala (Kanbur
(1987), Kanbur e Keen (1989), Kanbur, Keen and Tuomala (1994, 1995)) have
examined the implication of replacing the social welfare maximisation objective
with the poverty minimisation one. The optimal structure of marginal tax rates
is then defined with respect to this objective function.
This change of social goal has two major implications.
Firstly, poverty is measured as a function of income rather than individual

utility: a person is poor if his disposable income falls short of the minimum
that would allow him to attain a given ”decent” standard of living. This is
coherent with the view that considers the minimum income not only in terms of
consumption goods, but as the necessary condition to satisfy certain fundamental
needs, such as the rights to meet one’s nutritional requirements, to be clothed
and sheltered, or the power to participate in the social life of the community.
According to this perspective, in line with the conventional policy debate, poverty
indexes assign no value to the consumption of leisure by the poor.
Secondly, the non welfarist approach focuses tightly on the incomes at the

bottom of the distribution, while it ignores incomes above poverty threshold.
The welfarist approach, on the contrary, gives some weight to the welfare levels
of all individuals, even if weights may be differentiated in favour of low incomes.
At the opposite extreme, the Rawlsian social welfare function only considers the
welfare of the worst-off individual.
The adoption of a poverty minimising objective leads to a pattern of mar-

ginal tax rates potentially different from that resulting in the welfarist tradition.
Kanbur et al. (1994), examining the shape of the non linear tax schedule that
most reduces a given poverty index, conclude that, under certain conditions, over
some interval at the bottom of the income distribution the marginal tax rate is
lower under the non welfarist perspective than under the welfarist one. More
specifically, the optimal marginal rate at the lower end of the scale should be
negative, even though this result is not confirmed by their simulations. They

2Sen (1982) goes on arguing that ”often utility information is very difficult to obtain both
because of problems of measurability and comparability, as well as because of the well-known
difficulties in inducing honest revelation of preferences... In contrast some of the non-utility
information, e. g., ”equal pay for equal work” is being observed, or what primary goods people
have, may be a lot easier to obtain. Thus the restriction imposed by welfarism is not only
ethically limiting, it can be deeply problematic also from the point of view of data availability,
making this restriction ”doubly” regrettable” [Sen (1982), p. 340-41]
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note, however, that their framework is not suited for a comparison between the
two approaches. While the non welfarist minimand is independent of the cardi-
nalisation of utility, the welfarist maximand is not. Consequently, in the latter
case, no simple results on the optimal tax structure may be provided.
In the economics literature welfarist and non welfarist goals have generally

been adopted each to the exclusion of the other. On the contrary, people may
apply several different criteria when judging policy options. As Atkinson (1995)
argues, it is important to extend the range of social objectives to include non-
welfarist goals, namely those not based only on considerations of individual wel-
fare. These objectives, such as securing individual freedom and independence, or
the right to receive reward for effort, do not replace concern for social welfare,
that remains a relevant principle to be considered in social policy evaluations. In
order to combine multiple principles, Atkinson suggests, among other solutions,
the use of a higher-level social maximand that trades off different criteria, social
welfare included. The crucial issue is which form this social objective function
should have3.
Following Atkinson’s suggestion, this paper provides a method to include the

non welfarist goal of poverty alleviation in a welfarist analytical setting. Such a
framework enables us to directly compare the optimal linear income tax structures
resulting under the welfarist and non welfarist social objectives.
In the poverty literature, deprivation is commonly defined as shortage of in-

come with respect to a prespecified level, the poverty line, conventionally agreed.
Pursuing poverty alleviation goals implies to minimise an aggregate poverty index
which is the sum of all individual poverty measures. Consequently, the impact
of anti-poverty policies on social welfare cannot be evaluated. Likewise, as just
noted, poverty reduction cannot be considered as a social goal in the welfarist
context.
For a welfarist analytical framework to accommodate such objective, the latter

must be ”welfarised”4. To this purpose, poverty has been defined in terms of
utility rather than income, by specifying the ”poverty line utility” as the utility
enjoyed by the individual whose income is equal to the poverty line. In this
way, a person is poor if the difference between the poverty threshold utility and
individual utility is positive. The poverty minimisation implies to minimise this
difference.
Further, we show that the minimisation of the second poverty measure of

Clark et al. (1981) is equal to the maximisation of a censored function of individ-

3Creedy (1996) compares the effects on poverty and welfare of the introduction of a linear
income tax and a minimum income guaranteed scheme. His analysis is carried out by using
some well-known inequality and progressivity measures; in this way, Creedy (1996) departs
from the literature, in which target efficiency measures of Beckerman (1979) were traditionally
used.

4This term has been borrowed from Wane (2001). In his paper, poverty is ”welfarised” since
it is considered as a negative externality, which reduces individual utilities.
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ual incomes. By substituting incomes with a specific utility function we obtain a
censored social welfare function. This specification is flexible enough to encom-
pass both the non welfarist and the welfarist goals, since it retains the standard
social welfare framework while considering the poverty minimisation objective. It
comes from a crucial feature of the censored social welfare function, in which only
utility variations below the poverty threshold (i.e. redistribution in favour of the
poor) can affect collective welfare. Different social objectives may, consequently,
be analysed simply shifting the threshold along the income distribution.
Finally, conditions under which the poverty-minimising marginal tax rate is

higher than the welfare-maximising one are shown. The comparison between
different optimal linear income tax structures is carried out adopting the main
assumption of the model developed by Atkinson (1973), whose relatively simple
formulation allows to determine the fiscal parameters’ value under different as-
sumptions on income distribution and on the degree of inequality social aversion.
The higher redistribution resulting from the adoption of the poverty allevi-

ation goal may appear obvious. In this perspective, the effects of marginal tax
rate’s increases on higher incomes do not affect collective welfare, while a higher
lump sum subsidy which increases low incomes positively influences social well-
being.
However, we find that the opposite case may occur under specific conditions

on income distribution. In particular, we show that the redistribution resulting
from the maximisation of an utilitarian welfare function is higher than the one
obtained pursuing a poverty alleviation goal when the poor are close enough to
the poverty line.
The remainder of the paper is organised as follows. The next section presents

the general structure of the economy and introduces the censored social welfare
function. Section 3 provides conditions under which the optimal marginal tax
rate is higher when a poverty alleviation goal is pursued; in this section, numer-
ical simulations for specific poverty lines and parameters’ values are conducted.
Section 4 investigates particular cases in which the previous result may be over-
turned and the welfare maximising marginal tax rate can be higher than the
poverty minimising one. Section 5 concludes.

2 The basic model

We restrict our analysis to consider a government that levies a linear income tax,
such that the provision of a lump sum benefit is combined with a proportional
tax on all income.
Following Atkinson (1973), it is assumed that individual’s earnings depend

only on earning ability (n) and on the number of years of education received (S);
hours of work are supposed to be fixed. In particular, the individual has zero
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earnings when undergoing education while earns a constant amount z(n, S) = nS
when he is at work. He retires (and does not receive any pension benefit) after
R years.
The linear income tax function T (z) is:

T (z) = (1− β) z − α

where (1− β) = t is the proportional (constant) marginal rate and α is the
guaranteed minimum income, equal for all individuals.
Individual income generating possibilities (abilities) are distributed according

to the density function f(n), assumed to be Pareto in form:

f(n) = µnµn−µ−1

where n is the lowest ability and µ (with µ ≥ 2) reflects the degree of abilities’
dispersion around the mean value.
The individual problem is then to maximise the present value of lifetime

income (I), discounted at the interest rate i:

max
S
I(n) =

Z R+S

S

[z − T (z)] e−itdt (1)

or, solving the integral calculus:

max
S
I(n) = A (α+ βnS) e−iS (2)

where

A =
(1− e−iR)

i

The first order condition gives: S∗ =
1

i
− α

βn
for n ≥ αi

β
= n0

S∗ = 0 for n ≤ n0
(3)

It follows that the optimal level of S is negatively correlated to the subsidy
α and to the marginal tax rate (1− β), while it is positively correlated to the
individual ability.
The resulting level of lifetime income is then: I∗ = A

µ
βn

i

¶
e(

αi
βn
−1) for n ≥ n0

I∗ = Aα for n ≤ n0
(4)

Assuming that n0 ≤ n, such as S∗ > 0 for all individuals, the government
revenue constraint is:
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Z ∞

0

T (z) f (n) dn =

Z ∞

0

[(1− β) z − α] f (n) dn = 0

or equivalently:

β = 1− n0
nm

(5)

where nm denotes the mean value. This formulation implies that the population
is constant in size and the government is only concerned by redistribution.
Pursuing a welfarist objective, Atkinson (1973) assumes that the government

maximises social welfare, given by the sum of individual utilities, supposed to be
iso-elastic in form:

U (I) =
I1−ρ

1− ρ

and ρ is the income marginal utility elasticity.
Consequently, the social welfare function is:

max
α,β

W =

Z ∞

n

U [I(n)]f(n)dn (6)

Under the hypothesis of ρ = 1, the government maximand becomes a loga-
rithmic function:

max
α,β

W = log β +

Z ∞

n

log

µ
An

i

¶
f(n)dn+

Z ∞

n

³n0
n
− 1
´
f(n)dn (7)

The goal of the government is therefore to choose the tax schedule that maximises
this function under the revenue constraint (eq. 5).
The first order condition is:

β∗ =

∞Z
n

nm
n
f(n)dn

−1 (8)

By substituting the Pareto density function for f(n), the resulting marginal
tax rate is:

(1− β) =
1

µ2
(9)

This implies that the optimal marginal tax rate increases as µ decreases.
As the intuition confirms, a more unequal ability distribution, highlighted by a
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lower value of µ, may justify a more redistributive tax function, through a higher
marginal rate and subsidy.
As ρ increases, the optimal tax rate rises. For a Rawlsian welfare function,

the optimal rate is:

(1− β) =
1

µ

2.1 The censored social welfare function

In order to accomodate a poverty alleviation objective in this welfarist setting, we
firstly need to introduce a poverty measure to be minimised. Several measures of
deprivation have been developed in the poverty literature5. For our purposes, we
focus on the second index proposed by Clark, Hemming and Ulph (1981), since it
presents some useful properties. Specifically, in its derivation, Clark et al. (1981)
assume a social evaluation function defined on a censored income distribution
(Takayama (1979)), where for all incomes below the poverty line the effective
value is considered, while all incomes above the threshold are set equal to the
poverty line:

xi = min {xi,π}

where xi is the individual income and π is the poverty line.
Consequently, the social evaluation function for individual incomes is:

u(xi) =
1

ε
[min(xi,π)]

ε , ε ≤ 1

where the parameter ε measures the aversion to inequality among incomes of the
poor (Foster and Sen (1997)).
On the basis of the equally distributed equivalent income for the censored

income distribution (xeq), the CHU measure is obtained:

Pε = 1−
µ
xeq

π

¶
This may also be expressed as:

Pε = 1− 1
π

"
1

N

nX
i=1

(min(xi,π)
ε)

# 1
ε

5A survey of the poverty literature is beyond the scope of this paper. The interested reader
is referred to Ravallion (1994), Seidl (1988) and Zheng (1997), among others.
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This index, therefore, attaches an increasing weight to lower incomes when
ε < 0; for ε→ −∞ only the highest poverty gap matters.
Let us consider a monotonic transformation of the CHU index, defined on

individual abilities (n):

Pε =

Z ∞

0

1−
µ
xeq

π

¶ε

f(n)dn

It can be shown that minimising the CHU poverty index is equivalent to
maximise a censored income function. That is:

min
x
Pε = 1− ε

πε

Z ∞

0

µ
(xeq)ε

ε

¶
f(n)dn

is equal to:

max
x
(1− Pε) = + ε

πε

Z ∞

0

µ
(xeq)ε

ε

¶
f(n)dn

where:

xeq =

½
x for x < π
π for x ≥ π

The censored function can alternatively be written as:

(1− Pε) =
Z ñ

0

1

ε
(xε) f(n)d(n) +

Z ∞

ñ

1

ε
(πε) f(n)dn (10)

where ñ is the ability of the person that has an income equal to the poverty line.
This formulation implies that only income variations below the poverty threshold
can affect the function.
In order to ”welfarise” the poverty alleviation goal, we need to define depriva-

tion in terms of utility and not of income. In our setting, an individual is poor if
his utility is below a prespecified level, defined as the poverty line utility, U (π).
In this way, we depart from the conventional view of the poverty literature, in
which deprivation is defined as income shortfall from a predetermined threshold.
Assuming that the individual utility function is expressed as in Atkinson

(1973), the lifetime net income I (n) can be substituted for x in eq. (10). In
this way, each of the two integrals represents individual utilities, respectively of
those below and above the poverty line. π may be interpreted as the lifetime net
income below which individuals are considered poor.
Consequently, eq. (10) can be defined as a censored social welfare function:

W =

Z ñ

n

1

ε
[I(n)]ε f(n)dn+

Z ∞

ñ

1

ε
(πε) f(n)dn (11)
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where ñ, in this case, is the ability of the individual whose lifetime income is
equal to π.
Since lifetime incomes of those above the poverty line are set equal to the

threshold, only redistributions that affect incomes below π may modify social
welfare. This feature distinguishes the censored social welfare function from the
others: in standard social welfare functions, indeed, collective welfare is affected
by transfers on all income distribution. Meanwhile, this formulation is less ex-
treme than the Rawlsian one, in which only the welfare of the worst-off individual
matters.
As in Atkinson (1973), ε (the elasticity of the marginal utility of income)

measures the degree of income inequality aversion, even if, in eq. (11), it applies
only on incomes of the poor. Accordingly, in the censored welfare function, social
preferences about redistribution are expressed by both the parameter ε and the
poverty line. When π shifts along the income distribution, the range of incomes
over which preferences apply changes and different redistributive goals can be
examined. Specifically, when π →∞, the basic utilitarian social welfare function
(eq. 6) is obtained6.

3 A welfarist model with poverty

This section considers the case in which poverty alleviation is the main goal of the
government redistributive intervention. In the following, when poverty reduction
is the social objective, a label PR is used, to distinguish it from the standard
welfare maximisation problem.
Let us denote by π the lifetime post-tax income defining the poverty line:

π = I (ñ) = A [α+ β (ñS∗)] e−iS
∗

(12)

From eq.(12), it results that:

ñ =
π/A · eiS∗ − α

βS∗

i.e. the threshold ability level, for a given poverty line, depends on the fiscal
parameters (β and α).
The maximisation program of the government can be restated:

W =

Z ñ

n

1

ε
[I(n)]ε f(n)dn+

Z ∞

ñ

1

ε
(πε) f(n)dn

Assigning different values to ε, the shape of the social welfare function changes.
However, in order to have comparable results, we consider only the Atkinson’s

6On the contrary, when π → 0, the social welfare function tends to the maxi-min form.
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central case7. Assuming that ε = (1− ρ) = 0, the censored social welfare function
is logarithmic in form.
The objective of a poverty minimising government is therefore:

max
α,β

logW =

Z ñ

n

log [I (n)] f (n) dn+

Z ∞

ñ

log πf (n) dn

s.t. β = 1− n0
nm

Substituting the expression for I (n) and differentiating, the first order con-
dition defines the optimal value for the fiscal parameter β:

β∗PR = F (ñ)

 ñZ
n

nm
n
f(n)dn

−1

A comparison with the equivalent expression in the standard welfarist model
of the previous section (eq. 8) highlights that, in the latter case, welfare gains
and losses induced by changes in fiscal parameters affect all the population, while
in the poverty reduction case only effects on those below the poverty line matter.
After some manipulations, β∗PR can be expressed in terms of β

∗:

β∗PR = β∗ · F (ñ) [1 +Υ (ñ)] (13)

where:

Υ (ñ) ≡

Z ∞

ñ

nm
n
f(n)dnZ ñ

n

nm
n
f(n)dn

Eq. (13) implies that marginal tax rates resulting in the poverty reduction
and the standard welfarist approaches tends to be equal as ñ increases. This
outcome ensues directly from the nature of the censored function. When the
threshold ability level moves to the upper tail of the distribution, the censored
social welfare function approximates the utilitarian one. In the limit case, when
ñ → ∞, the gap between the two functions collapses. It must be noticed that,
in this case, when society is indifferent to poverty or the government does not
care about deprivation, one deals with the standard welfarist optimal linear tax
problem. The censored social welfare function allows thus to develop a more
general setting, within which the utilitarian formulation represents a special case.

7It is easy to demonstrate that subsequent results hold even when the more general case of
ε 6= 0 is considered.
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In the poverty reduction perspective, the problem of social welfare maximi-
sation may have either an internal solution (n ≤ ñ ≤ ∞) or a corner solution
(ñ = n). The latter case, however, is trivial. If the individual with the lowest
ability has an income equal to the conventionally agreed poverty line, the gov-
ernment does not need to redistribute in order to alleviate poverty, since no-one
is poor in that society.
In the following, it will be shown that conditions under which the internal

solution prevails depend on the level of the poverty line8.
Substituting for the Pareto income distribution, the optimal value for β∗PR is

derived:

β∗PR =
µ
1− 1

µ2

¶
γ (14)

where

γ ≡

h
1−

³n
ñ

´µi
·
1−

³n
ñ

´µ+1¸
and γ < 1 for every ñ > n.
Considering that the optimal value for β∗ in the standard welfarist model was

(1− 1
µ2
), it follows that:

β∗PR < β∗

or, equivalently, that the poverty minimising marginal tax rate is higher than the
(standard) welfarist one.

3.1 Numerical simulations

The model discussed in the preceding section shows that maximising a censored
social welfare function gives a higher marginal tax rate than maximising an usual
utilitarian function. However, this result is still stated in a general (implicit)
form, since the optimal value of β depends on the value of ñ, which in turn
depends again on β.

8Specifically, it will be argue that ñ of equilibrium is an increasing function of π and a
critical value, π̂, exists such that:

if π ≤ π̂ =⇒ the problem has a corner solution ñ = n

if π > π̂ =⇒ the problem has an internal solution ñ > n

11



The explicit solution for the fiscal parameter results from the following system
of equations9:

β∗PR =
µ
1− 1

µ2

¶
γ (15)

ñ∗ =
π/A · eiS∗ − α∗

β∗PRS∗
(16)

α∗ =
β∗PR (1− β∗PR)nm

i
(17)

where

S∗ =
1

i
− α∗

β∗PRñ∗

and α∗ is the optimal value for the lump sum subsidy, given β∗PR
10.

Substituting α∗ and S∗ in eq. (16), and given the eq. (15), the system may
be simplified11. The value of en which balances the system, therefore, results from
the following expression:

hγen
i
=

π

A
e

1−(1− hγ)nmñ


(18)

in which h ≡
³
1− 1

µ2

´
.

In eq. (18), en is an implicit function of known parameters. If we denote with
Φ (ñ) the left hand side and with Λ (ñ) the right hand side of eq. (18), the ensuing
properties come:

Proposition 1:
i) Φ (ñ) is such that Φ0 (ñ) > 0 and

lim
ñ→n

Φ =
h
³

µ
µ+1

´
n

i
= Φ

lim
ñ→∞

Φ =∞
ii) Λ (ñ) is such that Λ0 (ñ) > 0 and

9It is easily verified that the expression for β satisfies the constraint under which all indi-
viduals have a positive number of hours of education.(n ≥ n0).
10α∗ in eq. (17) derives from the revenue constraint, by substituting the expression for n0.
11In the following, to simplify the exposition, we miss out to denote with star the optimal

value of the variables.
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Λ =
π

A
e

1−
h
1− h

³
µ
µ+1

´i
nm

n



Λ̄ =
π

A
e

Proof: (see Appendix 1)

As we argue in the previous section, the social welfare maximisation problem
in the poverty reduction case may have either an interior or a corner solution.
Which solution prevails depends on the prespecified poverty threshold with re-
spect to a critical level, resulting from the limit value, for ñ→ n, of the difference
between Φ and Λ. Specifically, it may be shown that the poverty line critical level
π̂ is given by (see Appendix 2):

π̂ =
A

i

(µ− 1)n
µ

e
−
µ− 2
µ− 1



For an internal solution, the optimal value of en may be identified at the
intersection point between Φ and Λ.
Specifying some value for the parameters (µ, n, i, R), numerical simulations

allows us to verify the following:

Proposition 2: given the critical value of the poverty line
i) if π = π̂, the Λ (ñ) crosses the Φ (ñ) at ñ = n;
ii) if π < π̂ =⇒ Λ (ñ) < Φ (ñ) for every n, the Λ (ñ) does not meet the Φ (ñ)

at all. In this case, again, the corner solution holds, ñ = n;
iii) if π > π̂, the intersection between the curves Φ and Λ identifies the ñ of

equilibrium. In this case, the internal solution holds, ñ > n;
iv) the intersection, when it exists, is unique.

Proof: See Appendix 3

In the following graphics, the function Λ (ñ) is in bold, while the Φ (ñ) is in
dashed form (the dotted line represents the asymptote of Λ (ñ)). Fig. 1 shows
the case of an internal solution, identified by the point in which Φ meets Λ12.

12This simulation assumes the following parameters values: n = 1, i = 0.01, µ = 2, A = 25,
π = 5000.

13



As illustrated by simulations, when the level of π rises, the function Λ (and
its asymptote) shifts upwards. Correspondingly, the intersection point moves
rightwards and ñ of equilibrium rises. On the contrary, when the poverty line is
reduced, the function Λ gradually shifts downwards and the value of the threshold
ability decreases. The corner solution is displayed in Fig. 213.

Intuitively, the lower is the poverty line, the less are the poor, given the
income distribution. In the limit case, if the poverty line is low enough, no one
13This simulation has been carried out by assuming π = 1000, given other parameters values.
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could be considered poor. In the censored social welfare function, when ñ = n,
all individuals have the same income, equal to π. This implies that income
variations, induced by fiscal policies, do not affect collective well-being at all.
Since γ is an increasing function of ñ and βPR = hγ, it follows that βPR is

also an increasing function of ñ. Consequently, the marginal tax rate decreases
as ñ rises.
The bold line in Fig. 3 represents the optimal values of the fiscal parameter as

π changes, while the Atkinson’s solution is in dashed form. As shown graphically,
βPR is an increasing function of π and, for π → ∞, βPR tends to the standard
welfarist result.

It is possible to provide a clear economic interpretation to this pattern. If the
poverty line is relatively low (as long as π > π̂), the target group of the poverty
reduction intervention is given by the lowest income individuals. In this case, ñ
(and βPR) are low, while the marginal tax rate is high. Respecting the revenue
constraint, the high fiscal pressure allows to provide a significant (considerable)
subsidy. The intuition behind comes straightforward from the properties of the
censored welfare function: increases of the marginal rate affecting incomes above
the threshold do not have any effect on social welfare, since individual utilities
above the poverty line are all set equal to π itself14. On the contrary, changes
of fiscal parameters modify utilities below the threshold. At the lowest incomes,
the positive effect on net income of a higher subsidy exceeds the negative effect
of a higher marginal tax rate. From the social welfare maximisation point of

14Paradoxically, it could be possible to reduce individual incomes/utilities up to the poverty
line level. As long as none of the ”richest” crosses down the threshold, an equalizing taxation
would not affect social welfare.
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view, when the objective is poverty alleviation, a highly redistributive linear
income taxation is then justified. When the poverty line is set at higher levels of
income, the range of incomes upon which the negative effects of high tax rates
matter grows. The beneficial effects of redistribution have to be balanced with its
increasing costs, which affect a broader share of the population. ñ ( and βPR) are
higher, while the optimal marginal tax rate (and the optimal subsidy provided)
is lower. In the limit case, when π → ∞ (ñ → ∞), all individual utilities are
influenced by fiscal changes and the linear structure tends to be equal to the
Atkinson’s one.
Summing up, when the target group is restricted to the poorest, the optimal

tax-transfer structure is highly redistributive, taxing heavily the richest and sub-
sidising the poorest. The redistributive power of the tax schedule decreases as
the poverty line rises.
Finally, Fig. 4.a, b, c display how the intersection betweenΦ (ñ) andΛ (ñ) changes

for different values of the poverty line. They confirm that the internal solution,
when it exists, is unique.

Results discussed in this section are summarised in the following:
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Proposition 3:
i) the optimal linear marginal tax rate is higher when social preferences are

aimed at minimising poverty rather than at maximising a standard social welfare
function;
ii) the optimal value of the poverty reduction marginal tax rate is a decreas-

ing function of the poverty line. This means that redistribution is higher when
the poverty line is set at a low income level and decreses as the threshold shifts
upwards;
iii) when π → ∞, the optimal linear tax structure tends to approximate the

Atkinson’s one.

4 A special case

Previous findings may appear intuitive: a higher redistribution seems to be a
reasonable outcome when social preferences are such to privilege the poverty
alleviation goal.
However, it is possible to identify conditions under which the result can be

overturned and the poverty minimising marginal tax rate may be lower than the
standard welfare maximising one. To do so, we assume that the economy consists
of only two individuals: the ”poor” has an income a little below the poverty line,
while the ”rich” is relatively far from the threshold. This implies that only a little
income transfer from the rich to the poor is needed to raise the latter up to the
poverty line, reducing the poverty gap to zero. In other words, we are supposing
that a ”small size redistribution” is sufficient in order to minimise deprivation.
This assumption about the gap between the poor and the poverty line is crucial
for results derived in this section.
We denote by n1 the ability of the poor, while n2 (where n2 = kn1, with

k > 1) is the ability of the rich. As in the previous section, we assume that both
individuals have a positive number of years of education received, i.e. n1 > n0 =
αi

β
.

Let us define I (nj), with j = 1, 2, the optimal lifetime post-tax income of
each individual, given the value of β satisfying the revenue constraint15:

I (nj) = A

µ
βnj
i

¶
e

 (1− β) (n1 + n2)

2nj
−1


15Since we are supposing that both individuals choose a positive number of years of education,
the revenue constraint is given by:

β = 1− n0
nm

= 1− α

β
· 2i

n1 + n2
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It is easy to verify the following proposition:

Proposition 4:
i) for β ∈ (0, 1), the optimal income of the poor, I (n1), increases up to reach

its maximum value at β = β̂1 =
2

1 + k
, and then decreases;

ii) for β ∈ (0, 1), the optimal income of the rich, I (n2), is always increasing16;
iii) for k <

=

k, I (n2) meets I (n1) when the latter increases17 (See Fig. 5.a).

Proof: See Appendix 4

The constraint under which both individuals choose a positive number of
years of education, given the revenue constraint, implies that the solution of the
censored welfare function maximisation must satisfy the condition that βPR >

βistr =
k − 1
k + 1

(the proof is given in Appendix 5). It is easily verified that βistr R
β̂1 if and only if k R 3.
In the following, we assume, for analytical simplicity, that k <

=

k; specifically,
we initially suppose that k = 3.
The case of ”small size redistribution” we are considering takes place when

the poverty line is set within the interval [πmin,πmax], where πmin = A
³n1
i

´
e−1

is the income of the poor in the absence of any tax-transfer policy, while πmax =

A

µ
k − 1
k + 1

¶³n1
i

´
is the income level resulting from the intersection between I (n1)

and the line corresponding to the education constraint (βistr). The case is shown
in Fig. 5.a.
For each π within the interval, the problem of the censored social welfare

function maximisation becomes:

max
α,β

W = log I (n1) + log (π) (19)

subject to the public revenue constraint:

βPR = 1−
α

βPR
· 2i

n1 + n2

16The function I(n2) reaches its maximum value when β̂2 =
2k

(1 + k)
> 1.

17The critical value
=

k is given by:

k = exp

"
(k − 1)2
2k

#

Besides the solution k = 1 (rejected by our assumption), this equation has a unique solution

in the range of acceptable values for k. Specifically,
=

k= 5, 033.
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Solving the problem, the function is maximised for the value of βPR(π) > βistr
such that the poor is lifted exactly to the poverty line, while the rich continues to
stay above. Note that, once reached the poverty alleviation goal, the government
is indifferent to other policies implying more redistribution, i.e. marginal tax
rates higher than the ones reducing the poverty gap to zero.
The optimal tax rate is an increasing function of the poverty line, as shown

in Fig. 5.b. As it is intuitive, the lower the income level at which the threshold
is set, the lower the tax rate needed to the poor to escape from poverty.

In order to compare our function with the outcome resulting under a standard
welfarist approach, the following maximisation has to be solved:

maxW = log I (n1) + log I (n2)

s.t. β = 1− α

β
· 2i

n1 + n2

In this case, the optimal value for the fiscal parameter is easily obtained:

β =
4n1n2

(n1 + n2)
2 =

4k

(1 + k)2

Fig. 5.b shows the range of poverty lines values for which the poverty min-
imising marginal tax rate is lower than the one resulting from the usual welfarist
approach. Specifically, this outcome is found when π is low, and a little transfer
is needed to eradicate poverty. When the poverty line is higher, by contrast, a
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higher marginal rate is required, even under our hypothesis of ”small size redis-
tribution”.
It may be of interest to better explain this outcome, which seems to go against

our previous remarks. The case for a less redistributive linear tax structure
emerging in a poverty alleviation framework is again a consequence of the kind
of function we are considering. While the standard social welfare function, such
as the utilitarian Atkinson’s one, is adverse to income inequality over all the
distribution (i.e., the parameter reflecting the degree of aversion to inequality
applies on all income levels along the whole distribution), the censored welfare
function attaches a positive weight only to inequalities between incomes of the
poor and the poverty line. In our two individuals’ example, it means that the
utilitarian function considers the whole income gap between the poor and the rich,
while the censored function considers the gap between the income of the poor and
the threshold only. Given the value of the inequality aversion parameter, if we
suppose a gap between individual incomes large enough and a small gap between
the lower income and the poverty line (the so-called ”small size redistribution”),
a higher redistribution may be required following the goal of inequality reduction,
rather than poverty reduction.
For values of k 6= 3, the range of π for which the case of ”small size redistrib-

ution” takes place changes, since πmax is identified by the highest between β̂1 and
βistr

18. The set of optimal values for βPR also changes: the lowest value is equal
to the highest between β̂1 and βistr. However, even when k 6= 3, some solutions
for the censored welfare function maximisation are less redistributive than the
standard welfarist one.

Fig. 6 provides an example of linear tax structures obtained under the two
perspectives. The line α-β identifies the tax-transfer scheme resulting from the
maximisation of a standard social welfare function, while the αPR-βPR is the
poverty minimising linear tax schedule. Consistently with the previous analysis,
the poverty reduction function has an higher slope (given by βPR) and a lower
vertical intercept (equal to the lump sum subsidy) than the line α-β.

18Specifically, for k > 3, βistr > β̂1 and then πmax=π (βistr). By contrast, when k < 3,

βistr < β̂1 and πmax=π
³
β̂1

´
.
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In the conventional utilitarian framework, the optimal individual allocations
are given by A and B, which identify zp and zr, the before-tax income levels,
respectively of the poor and the rich. Likewise, C and D (to which correspond
zpPR and z

r
PR) represent the optimal solutions for the censored welfare function

maximisation. In both cases, the difference between after-tax and before-tax
incomes for the poor is equal to the same difference for the rich.
It is interesting to note that, given the functional form for z, the pre-tax

income is an increasing function of β. As a consequence, a lower marginal tax rate
gives place a higher before-tax income. Furthermore, since the income elasticity
to changes of β is increasing as the ability decreases, the effect of a marginal
rate lowering on z is higher for the lowest ability. It explains why (zpPR − zp) >
(zrPR − zr).

5 Conclusion

This paper aims at developing a unified framework to accomodate the typically
non welfarist goal of poverty reduction in a welfarist analytical setting. This
framework has then been used to define the optimal linear income tax function,
when social preferences are oriented to the poverty alleviation objective.
The innovative feature of our approach mainly lies in the adoption of a cen-

sored social welfare function, that allows to treat the standard utilitarian income
tax problem as a special case. It relies on the nature of the censored function:
since social welfare is affected only by changes in well-being of those below the
poverty line, different distributive preferences may be assessed simply by shifting
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the threshold along the income distribution. Consequently, a direct comparison
between optimal tax structures resulting under the welfarist and non welfarist
perspectives has been carried out.
Analytical investigations, corroborated by numerical simulations, highlight

conditions under which the poverty minimising income tax structure is more
redistributive than the standard welfare maximising (utilitarian) one. More pre-
cisely, the optimal value of the poverty reducing marginal tax rate increases when
the poverty line shifts downwards. This is coherent with the properties of the
censored social welfare function. A more redistributive linear income tax schedule
is justified when the target group is made up of the poorest.
Under more restrictive assumptions on the income distribution, however, spe-

cial cases may emerge and previous findings may be overturned. Specifically, if we
suppose that the lowest income is close to the poverty line, a little income transfer
(a ”small size redistribution”) from the richest to the poorest can be sufficient to
minimise deprivation. Besides, if the income gap between the rich and the poor
is broad enough, an utilitarian welfare maximisation goal may require a higher
redistribution. In this context, therefore, the optimal linear income tax scheme
resulting from the maximisation of an utilitarian welfare function can imply a
higher marginal tax rate (and subsidy) than the one derived pursuing a poverty
alleviation objective.

Appendix 1:
Proof of Proposition 1.
To analyse the behaviour of Φ (ñ) we initially consider the function γ (ñ) ="
1− ¡n

ñ

¢µ
1− ¡n

ñ

¢µ+1
#
.

The first derivative of γ is given by:

γ0 (ñ) =

1

ñ

³n
ñ

´µ n
µ−

³n
ñ

´h
(µ+ 1)−

³n
ñ

´µio
·
1−

³n
ñ

´µ+1¸2
Since the denominator,

1

ñ
and

³n
ñ

´µ
are all strictly positive, the following

holds

γ0 R 0⇐⇒
n
µ−

³n
ñ

´h
(µ+ 1)−

³n
ñ

´µio
R 0 (20)

It is then possible to show that, when µ ≥ 2:

µ ≥
³n
ñ

´h
(µ+ 1)−

³n
ñ

´µi
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so that eq. 20 is satisfied for ≥ 0.
Moreover, it is easily verified that, when ñ → n, γ →

³
µ
µ+1

´
< 1, while for

ñ→∞, γ → 1.
Since it is defined as a product of increasing functions, Φ (ñ) is strictly in-

creasing in ñ and it lies between an inferior value
h
³

µ
µ+1

´
n

i
= Φ and ∞.

Secondly, it can be shown that Λ is a strictly increasing function and it goes
from an inferior value, given by:

lim
ñ→n

Λ (ñ) =
π

A
e

1−
h
1− h

³
µ
µ+1

´i
nm

n


= Λ

and an upper value, to which it tends asymptotically:

lim
ñ→∞

Λ (ñ) =
π

A
e = Λ̄

The first derivative of Λ is given by:

Λ0 (ñ) =
π

A
e

1−(1− hγ)nmñ

 · nm (hγ0ñ+ 1− hγ)
ñ2

(21)

Since the first term is always positive, the sign of eq. (21) depends on
(hγ0ñ+ 1− hγ), in which (1− hγ) > 0 and γ0 > 0. It follows that:

hγ0ñ+ 1− hγ > 0 ⇒ Λ0 (ñ) > 0

Appendix 2:
The critical value of the poverty line, π̂, is obtained by calculating the limit

of the difference (Φ− Λ), as ñ→ n:

lim
ñ→n

(Φ− Λ) =
hγñ

i
− π

A
e

1−(1− hγ)nmñ



Substituting expressions for h and nm and considering that lim
ñ→n

γ = µ
µ+1

previous equation becomes:

lim
ñ→n

(Φ− Λ) =
1

i

µ
µ− 1
µ

¶
· n− π

A
e

µ− 2µ− 1


(22)
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π̂ is the poverty line level for which eq.22 is equal to zero:

π̂ =
A

i

(µ− 1)n
µ

e
−
µ− 2
µ− 1



Appendix 3:
Numerical simulations allow to verify the uniqueness of the intersection be-

tween the curves Φ (ñ) and Λ (ñ), when it exists. Specifically, simulations have
been carried out for alternative values of the parameter µ of the Pareto income
distribution (µ = 2, µ = 3, µ = 4), and for a wide range of poverty lines levels.
Other parameters (A, i e n) have been held constant, since their variation does
not influence our testing.
In all cases, the intersection between Φ (ñ) and Λ (ñ), corresponding to the

points where the curve (Φ (ñ) − Λ (ñ)) meets the x-axis, has been proved to be
unique.
Fig. 4. a, b, c show the case in which we consider µ = 2: under this

assumption, the critical value of the poverty line below which Φ (ñ) and Λ (ñ)
do not meet is around 1106. In particular, the first simulation supposes that
the poverty line may change from 1095 and 1120. The pattern of the difference
(Φ (ñ) − Λ (ñ)) is increasing for all these values and ñ, when it exists, vary in a
range of values between 1,07 e 1,14. It is worth to note that, for π < 1106, the
two functions do not meet. In the Fig. 4.b, the intersection always exists, since
the threshold assumes values between 1115 e 1240, and is unique. In this case,
the pattern of the difference (Φ (ñ)−Λ (ñ)) highlights a U-form for high levels of
the poverty line, i.e. the function is decreasing for low values of ñ and then always
increasing. In all cases, however, the curve meets the x-axis when it increases.
The Fig. 4.c, where higher values of π are considered, confirms the U-form of the
curve. The possibility of a non-uniqueness of the intersection, however, is ruled
out: for high levels of π, the intersection between the curve (Φ (ñ)− Λ (ñ)) and
the horizontal axis takes place for high values of ñ, for which the curve is always
increasing. On the other hand, if we lower π, so the intersection corresponds to
lower values of ñ, the U-pattern tends to vanish (as shown by Fig. 4.a).
Even if results are not provided here, simulations carried out for µ > 3 support

previous findings, highlighting patterns similar to the previous ones.

Appendix 4:
Proof of Proposition 4:
By derivating the function I (n1) with respect to β we obtain:

∂I (n1)

∂β
= A

³n1
i

´
e

 (1− β) (n1 + n2)

2n1
−1
 ·
1− β (n1 + n2)

2n1

¸
24



It follows that:

∂I (n1)

∂β
R 0⇐⇒ β Q 2n1

n1 + n2

Recalling that n2 = kn1, where k > 1, then

∂I (n1)

∂β
R 0⇐⇒ β Q 2

1 + k
≡ β̂1 (23)

with β̂1 < 1, since k > 1.
Eq. 23 implies that the function I (n1) is increasing up to reach its maximum

value at β̂1, and then decreases. Specifically, in β̂1 the function is equal to:

Î
³
n1 | β = β̂1

´
= A

µ
2

1 + k

¶
n1
i
e

k − 3
2



Since β̂1 < 1, Î (n1) lies within the interval of acceptable values for β (note
that 0 < β < 1).
When β = 1, I (n1) is given by:

I (n1 | β = 1) = A
³n1
i

´
e−1

As far as the derivative with respect to β of the lifetime income function for
the second individual is concerned, it follows that:

∂I (n2)

∂β
R 0⇐⇒ β Q 2k

(1 + k)
≡ β̂2 (24)

where β̂2 > 1, since k > 1.
According to Eq. 24, the function I (n2) increases up to reach β̂2, at which

the income of the richest individual is maximum. However, since β̂2 > 1, it lies
outside of the range of possible values for β. In particular, when β = 1, I (n2) is
equal to:

I (n2 | β = 1) = A
³n2
i

´
e−1 = A

µ
kn1
i

¶
e−1

The range of values for which I (n1) ≥ I (n2) is given by:

n1e

 (1− β) (n1 + n2)

2n1
−1
 ≥ n2e

 (1− β) (n1 + n2)

2n1
−1


or equivalently
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β ≤ 1− 2k

k2 − 1 log k

Consequently, I (n1) meets I (n2) for values of β < β̂1 when

k > e

(k − 1)2
2k

It is then easy to verify that previous inequality holds for 1 ≤ k ≤ 5, 033.

Appendix 5:
In order to have both individuals choosing a positive number of years of edu-

cation, the condition the solution of the censored welfare function maximisation
must satisfy is derived from the revenue constraint, by substituting the value of
α in n1 ≥ n0. Since we assumed n2 = kn1 it follows that the education constraint
implies:

β ≥ k − 1
k + 1

≡ βistr
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