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Standardize, tr.v.

To cause to conform to a standard.

To evaluate by comparing with a standard.

The American Heritage Dictionary of the English Language, Fourth Ed.

1 Introduction

In many situations one may wish to compare a given attribute or characteris-
tic which refers to a certain context, with another attribute or characteristic
referrring to a possibly different context. For example, one may wish to
compare the grade of a student in a given school with the grade of another
student in a different school, or the economic status of an individual who
lives in a certain region, with that of another individual living in a different
one. For example how does a $50.000 annual income in the US compare to a
$10.000 annual income in Romania? Or, how does a 75/100 grade in math-
ematics in a good school compare to a 75/100 grade in a poor one? While
such questions seem ubiquitous, we are not aware of any theoretical work on
the “good ways” to accomplish this task. In this paper, we propose some
properties that a standardization process should satisfy, and characterize a
framework for being able to answer the questions posed above.

Suppose that you have a real valued vector u describing a given charac-
teristic in a group of individuals in a given context u, and another real valued
vector v which measures the same characteristic for a group of individuals

1



in a different context v. How can you compare ui in u with vj in v? Stan-
dardizing means comparing ui and vj by conforming them to a standard con-
text.1 In this sense, our approach is akin to the comparison of demographic
characteristics of a given population by transforming each population into
a “standardized population” with given age and gender characteristics (xxx
references).

Our approach is based on the search of good properties of a standard-
ization function, which can be seen as a transformation of the elements of a
vector into standardized values, i.e., elements belonging to a standard con-
text. Our set of axioms allows us to characterize a class of standardization
functions which includes some widely used procedures. As remarked above,
while the transformation of real numbers into standardized values is a com-
mon endeavor in many applied and theoretical fields, we are not aware of
previous literature on axiomatic characterizations of standardization.

Finally, we stress that our approach may be of use in the problem of
multidimensional comparison of well-being, which is recently receiving a lot
of theoretical, empirical and political attention. When comparing multidi-
mensional attributes, standard practice suggests to aggregate different real
valued well being indicators after somehow transforming each indicator into
comparable units (see e.g. The Handbook on Constructing Composite Indica-
tors, [?], for an extensive practical guide on the different data transformation
typically employed).

2 Statistics

The first assumption we make is that data are represented by vectors of reals
of size ≥ 2, so that our data space is a subset V of

⋃∞
n=2 Rn. An element of

V is a vector that you want to standardize.
Given a vector u, how much information do we need about u−i to be

able standardize a given element ui? On one extreme, we may insist that we
must know all the elements of u−i. On the other, we may think that we need

1Probably the most famous standardization procedure -namely the creation of stan-
dardized values in statistics- can be seen as an application of this principle; since comput-
ing normal probabilities with arbitrary mean and variance traditionally required a certain
degree of effort, it made sense to compare values under different normal distributions by
comparing them with a standard (zero mean unit variance) one for which tables were
calculated.
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no information about u−i, in which case the very notion of standardization
is meaningless. In most situations, however, we may be happy with partial
information in terms of statistics.

Definition 1 A statistic over V is a permutation invariant function τ :
V 7→ R. Given a set of statistics T over V, we say that a statistic τ is
primitive in T if (i) τ ∈ T and (ii) there are no finite sequence τ1, . . . , τk ∈ T
and no function f such that, for all x ∈ V, τ(x) = f(τ1(x), . . . , τk(x)).

Definition 2 A statistic τ is

• homogeneous (of the first degree) if τ(au) = aτ(u) for every vector
u ∈ V and every scalar a > 0;

• weakly additive if τ(u + b) = τ(u) + τ(b) for every vector u ∈ V and
every scalar b, where b is the vector in R|u| such that all its elements
are equal to b.

• a location statistic if τ(u + a) = τ(u) + a for every vector u and every
scalar a;

• a dispersion statistic if τ(u + a) = τ(u) for every vector u and every
scalar a.

We shall assume that there is always a fixed finite amount of statistical
information about elements of V (no matter how large they are), which is suf-
ficient to make all the necessary discriminations required for standardization
purposes. Such fixed set of summarizing statistics, call it T = {τ1, . . . , τk},
is used as a “sieve” in order to filter out the irrelevant information. In other
words, T is a sufficient set of statistics for standardization purposes.

3 Standardization frame

Let ∼T be the equivalence relation defined as follows: x ∼T y if and only if
τ(x) = τ(y) for all τ ∈ T . In other words, each equivalence class induced by
∼T consists in the set of all solutions of the following system of equations:

τ1(x) = c1
...

τn(x) = cn,
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where τ1, . . . , τn are all the elements of T and c1, . . . , cn are constants.
Standardization then depends on the partition of V induced by the sta-

tistical information conveyed by the chosen set T : the larger the amount of
information, the finer the partition, and T -equivalent vectors will be treated
exactly in the same way for standardization purposes. In other words, we
maintain that the “context” relative to which the standardized value is de-
termined is not a vector, but an equivalence class of vectors identified by the
values of the chosen statistics.

Definition 3 A standardization frame is a triple F = 〈V , T , D〉 such that:

1. T is a finite set of statistics over V such that for every τ ∈ T , τ is
primitive in T ;

2. D is a distinguished element of V/ ∼T , i.e. a distinguished equivalence
class in the partition of V induced by ∼T .

In the sequel, we will assume that all statistics in T are homogeneous of
the first degree and weakly additive. This is not a severe restriction since
most statistics one may want to use in this context either enjoy the two
properties above (such as mean, mode, quantiles, maximum and minimum,
standard deviation, interquantile dispersion) or may be expressed as func-
tions of statistics which enjoy them (such as variance, skewness, kurtosis,
moments, positive power means).2

Definition 4 We say that T is XXX if and only for every E ∈ V/ ∼T ,
dom(E) is an interval, where dom(E) is defined as follows:

dom(E) = {x|∃z ∈ E, x occurs in z};

4 Standardization function

We come now to main purpose of this paper, that is, to investigate a stan-
dardization function over the standardization frame F .

2To mention just one example, the m-order moment 1
n

∑n
i=1 x

m
i can be expressed as a

function of the mean µ(x) and the set of statistics ( 1
n

∑n
i=1(xi−µ(x))j)1/j for j = 2, · · · ,m,

which enjoy our two properties.
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Definition 5 Given a standardization frame F , a standardization function
over F is a mapping S from R×V into R, which is strictly increasing in the
first argument.

Let S(x) denote the vector obtained from x by applying the standardization
function S to each of its elements, that is, S(x) = [S(x1,x), . . . , S(xn,x)].

Consider the following properties that S may satisfy:

Property 1 S(x) ∈ D for every x ∈ V.

Property 1 defines a standardization function as a function which trans-
forms data into a standard context (i.e., S maps any vector in V into one in
the distinguished class D), which is the key property of the standardization
function.

From this property and the definition of a standardization frame it follows
that, for every F = 〈V , T , D〉 and every S over F ,

τ(S(u)) = τ(S(v)) for every τ ∈ T and u,v ∈ V . (1)

Property 2 S(xi,x) = xi whenever x ∈ D.

Property 2 says that when a given vector is already in the distinguished
class D, we are happy to leave it unchanged. Notice that, in conjunction with
Property 1, this property implies that S is stable, that is, S(S(x)) = S(x)
for every x ∈ V .

Property 3 Whenever xi = vj and x ∼T v, S(xi,x) = S(vj,v).

Property 3 basically expresses the fact that S(xi,x) is a function of xi
and of the equivalence class of x.

Property 4 for every E ∈ V/ ≡T , every u,v,w ∈ E and every x ∈ u,
y ∈ v, z ∈ w,

|x− y| ≤ |x− z| if and only if |S(x,u)− S(y,v)| ≤ |S(x,u)− S(z,w)|.

This last property says that S preserves the relation “x is closer to y than to
z” between elements of equivalent contexts u,v, z. For example, it says that
if Joe, Matt and Jane belong to equivalent classes (with respect to the given
statistics) and Joe’s grade in math is closer than Matt’s to Jane’s before the
standardization, then it should also be closer after standardization.
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5 Result

Theorem 1 Let S be a standardization function over F = 〈V , T , D〉 such
that #T > 1 and T is XXX. S satisfies Properties 1–4 if, and only if, for
every non-degenerate3 u ∈ V,

S(ui,u) = c ·
(ui − τ2(u)

τ1(u)

)
+ d

for some dispersion statistic τ1 and location statistic τ2, where the constants
c and d equal respectively to the value of τ1 and τ2 in the distinguished class
D.

The theorem basically says that whenever S satisfies Properties 1–4:

1. No matter how many statistics we may think it appropriate to use for
standardization purposes, the set T must contain exactly two statistics;

2. These two statistics are fairly precisely defined: one must be a location
statistic and one a dispersion statistic;

3. Once choice is made of the favourite location and dispersion statistics
and their value in the distinguished equivalence class, the functional
from of S is exacly determined.

Of course the theorem characterizes two very common standardization pro-
cedures: if the mean and the standard deviation are chosen as favourite
location and dispersion statistics, and D is the set of vectors with zero mean
and unitary standard deviation,

S(ui,u) =
ui − µ(u)

σ(u)
,

while if the minimum and the range are chosen as favourite location and
dispersion statistics, and D is the set of vectors x ∈ D such that min(x) = 0
and max(x)−min(x) = 1,

S(ui,u) =
ui −min(u)

max(u)−min(u)
.

On the other hand, the theorem also tells that other common standardization
procedures must violate some of our properties. For example, using ranks
for standardization violates Property 4.

3We say that a vector is degenerate when all of its elements are equal.
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6 Appendix: Proof of the Theorem

To prove the theorem, we first need two preliminary lemmas.

Lemma 1 Let F = 〈V , T , D〉 be a standardization frame. We can assume
without loss of generality that every statistic τ ∈ T is either a dispersion or
a location statistic.

Proof First, observe that a weakly additive statistic is: (i) a location
statistic if and only if τ(a) = a for every scalar a and every vector a such
that all its elements are equal to a; (ii) a dispersion statistic if and only if
τ(a) = 0 for every scalar a and every vector a such that all its elements are
equal to a.

Let now τ be any statistic in T . Let 1 be any vector such that all its
elements are equal to 1 and a be any vector of the same size as 1 and such
that all its elements are equal to a. There are two cases: if τ(1) = 0, then τ
is a dispersion statistic, since we assume that all statistics are homogeneous
of the first degree and, therefore, τ(a) = aτ(1) = 0 (recall that all statistics
in T are assumed to be weakly additive and the latter identity is a necessary
and sufficient condition for any weakly additive statistic to be a dispersion
statistic); on the other hand, if τ(1) = c 6= 0, then τ(a) = aτ(1) = ca and
so 1

c
τ(a) = a. Therefore, 1

c
τ is a location statistic, since the latter identity

is a necessary and sufficient condition for a weakly additive statistic to be a
location statistic. Now, since 1

c
τ(x) is a function of τ(x), the standardization

frame F ′〈V , T ′, D〉, where T ′ is the set of statistics obtained from T by
replacing τ with 1

c
τ induces the same partition on V as the original frame.

So every standardization function over F is also a standardization function
over F ′. �

Lemma 2 For every standardization frame F = 〈V , T , D〉, every standard-
ization function S over F , every equivalence class E ∈ V/ ≡T and every
u ∈ E:

S(ui,u) = aEui + bE,

for some aE > 0 and bE depending only on E.

Proof
Let E be an arbitrary equivalence class in V/ ≡T and x and y be two

arbitrary real numbers in dom(E) such that x + y, x − y ∈ dom(E). Now,
observe that it follows from Property 4 and Definition 5 that

S(x+ y,u)− S(x,v) = S(x,v)− S(x− y,w),
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for all u,v,w ∈ E such that x+y occurs in u, x occurs in v and x−y occurs
in w. Notice that, within the same equivalence class E, the function S is
indepedent of its second argument (by Property 3), since the value of S is
preserved under substitutions of the vector in the second argument with an
equivalent one. So, let SE(z) be the function defined as follows: SE(z) = x
if and only if S(z,w) = x for every vector w ∈ E such that w contains z.
This function is defined for every real in dom(E). The argument above shows
that:

SE(x+ y)− SE(x) = SE(x)− SE(x− y),

for all x and y in dom(E). Therefore SE must be a linear function, that is,
there exist constants aE and bE (with aE > 0 since S is strictly increasing)
such that:

SE(z) = aEz + bE.

This concludes the proof of the lemma. �

We are now ready to prove the theorem. It is easy to see that any S taking
the assumed form satisfies Properties 1–4. To prove the converse, let us
assume that S is a standardization function over F = 〈V , T , D〉 and assume
that the statistics in T have been ordered in some arbitrary way, that is
T = {τ1, . . . , τk}, k > 1.

Recalling that, by Lemma 2, S(ui,u) = aEui+bE for some aE, bE depend-
ing only on E let α and β be functions Rk 7→ R such that α(τ1(u), . . . , τk(u)) =
aE and β(τ1(u), . . . , τk(u)) = b for every E ∈ V/ ≡ and every u ∈ E. Hence,
we have that:

S(ui,u) = αT (u)ui + βT (u)),

where

αT (u) = α(τ1(u), . . . , τk(u))

and

βT (u) = β(τ1(u), . . . , τk(u)).

Given Lemma 1, we may distinguish two cases.
Case 1. The first statistic in T is a dispersion statistic, say δ. Since δ

is homogeneous of the first degree and weakly additive, then, by equation 1,
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for some constant c:

δ
(
S(u)

)
= δ(αT (u)u + βT (u)) = δ(αT (u)u) + δ(βT (u)) (2)

= αT (u)δ(u)

= c.

Hence αT (u) = c/δ(u).
Observe that, if δ′ is another dispersion statistic in T , then αT (u) =

c′/δ′(u) for some constant c′ and so δ′(u) = c′

c
δ(u). But δ′ is a function of

δ. So, since T contains only statistics which are primitive in it, and δ ∈ T ,
then δ′ 6∈ T . Therefore, T cannot contain any other dispersion statistic.

Therefore, by Lemma 1, the next statistic in T , must be a location statis-
tic. Let us call it λ. Again, since λ is homogeneous of the first degree and
weakly additive, we have that, by equation 1:

λ
(
S(u)

)
= λ(αT (u)u + βT (u)) = λ(αT (u)u) + λ(βT (u)) (3)

= αT (u)λ(u) + βT (u)

= d

for some constant d.
Hence, βT (u) = d − αT (u)λ(u) and, replacing αT (u) with its value ob-

tained above, βT (u) = d− c
δ(u)

λ(u). So:

S(ui,u) = αT (u)ui + βT (u) =
c(ui − λ(u))

δ(u)
+ d.

Since at this stage S is completely determined, any other statistic in T is
redundant.

Case 2 : The first statistic in T is a location statistic. Let us call it
λ. Then, since λ is homogeneous of the first degree and weakly additive,
we have, as in (3) above, that βT (u) = d− αT (u)λ(u). Let us, then, try to
determine αT (u). Now, if the next statistic in T is a dispersion statistic, then
by (2) above, we fall back to case 1. Suppose, then, that the next statistic
in T is a location statistic, call it λ′. Then, using again the equations (3)
above, with λ′ instead of λ and a new constant e instead of d, we obtain
βT (u) = e− αT (u)λ′(u). So

d− αT (u)λ(u) = e− αT (u)λ′(u)
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and

αT (u) =
e− d

λ′(u)− λ(u)
.

Now, observe that, since λ′ and λ are location statistics, their difference is a
dispersion statistic, for

λ(u + a)− λ′(u + a) = λ(u) + λ(a)− λ′(u)− λ′(a)

= λ(u) + a− λ′(u)− a
= λ(u)− λ′(u)

(4)

Let δ(u) = λ′(u)− λ(u) and let c = e− d, then we have again that:

S(ui,u) = αT (u)ui + βT (u) =
c(ui − λ(u))

δ(u)
+ d.

Since S is again completely determined, any other statistic in T is redundant.
Notice now that, using the fact that τ1 and τ2 are respectively a dispersion

and a location statistic, τ1(S(x)) = c τ1(x)
τ1(x)

= c and τ2(S(x)) = c( τ2(x)
τ1(x)
− τ2(x)
τ1(x)

)+
d = d for any x ∈ V . Using Property 1 and equation 1 concludes the proof
of the theorem.
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