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Abstract

In this paper we combine within the same framework two different
research lines that have been analyzed separately in the recent past.
The two research lines we aim at joining together concern, respectively,
the effects of government spending on economic growth and the analy-
sis of the properties of (asymptotically) balanced growth paths in the
presence of a non-constant time preference rate. We assume that both
the level of technology and the size of population increase exogenously
over time and we postulate that both population and the ratio of pub-
lic expenditure to GDP follow a logistic behavior over time. Within
this framework we are interested in analyzing the dynamics of such
variables (both in aggregate and in per-capita terms) as consumption,
output and physical capital and their growth rates. Through numer-
ical simulations we prove the existence of an asymptotically balanced
growth path (ABGP) equilibrium.

Keywords: Economic growth, physical capital accumulation, Malthusian
population change, public expenditure, technological progress.
JEL numbers: O40, O41, H50.

1 Introduction

In recent years there has been a renewed interest in uncovering the ulti-
mate determinants of economic growth. Overall, a large consensus has been
reached on the fact that such factors as technological progress, knowledge

1



spill-overs, accumulation of capital (in a broad sense), government’s pur-
chases of goods and services and population dynamics might be highly in-
fluential in increasing people’s wealth and living standards in the long run 1.
The main objective of this paper is to combine within the same framework
two different research lines that, for the most part, have been analyzed sep-
arately in the recent past. The two research lines we aim at joining together
in this paper are, respectively, the one studying the effects of government
spending on economic growth and that analyzing the properties of (asymp-
totically) balanced growth paths in the presence of a non-constant time
preference rate. Since the pioneering work of Barro (1990), it is widely rec-
ognized that government spending (more precisely, government’s purchases
of goods and services) plays a major role in affecting economic growth. In-
deed, it is found2 that in the very long-run consumption, physical capital
and output all grow at a common (constant) rate determined, among oth-
ers, by the constant level of technology and of the labor force (strong scale
effect)3 and by the constant ratio of public spending to GDP. With respect
to this strand of the literature our paper introduces two important differ-
ences. The first consists in assuming that both the level of technology and
the size of population (labor force) increase exogenously over time (i.e., we
consider the case of positive technological progress and demographic dynam-
ics). The second consists in postulating that both population and the ratio
of public expenditure to GDP follow a logistic behavior over time. Within
this framework we are interested in analyzing the dynamics of such vari-
ables (both in aggregate and in per-capita terms) as consumption, output
and physical capital and their growth rates. While the use of a logistic-like
function for population change is not new4, the use of such a function in
stating the behavior over time of the public expenditure to the GDP ratio
deserves some further comment since it represents one of the main novelties
of this contribution. The logistic model assumption to describe the dynam-
ics of the ratio of public expenditure to income is due to Florio and Colautti
(2005). However in their paper they did not include it in a fully developed
growth model which is the aim of the present work. As mentioned above our
paper is also related to the literature on endogenous time-preference rates
and the existence of balanced growth path equilibria. Using the preference
setup introduced by Uzawa (1968) and later on extended by Epstein and
Hynes (1983), Epstein (1987), Obstfeld (1990), Shi and Epstein (1993) and

1Elegant surveys of the different approaches to the so-called Endogenous Growth The-
ory are represented by, among others, the books by Barro and Sala-i-Martin (2004) and
Aghion and Howitt (1998).

2See Barro and Sala-i-Martin (2004), p.221, equation (4.42).
3Empirical evidence (Jones, 2005) rejects the strong scale effect.
4Exponential population growth is a special case of logistic population growth. By

employing a logistic-like process for population change one easily arrives at the Malthusian
result that the size of the population is asymptotically constant (population growth is
asymptotically equal to zero).
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Drugeon (1998), Palivos et al. (1997) establish (necessary and sufficient)
conditions for the existence of balanced growth and asymptotic balanced
growth paths. Under a linear technology, they show that the constancy
of the elasticity of marginal utility and of the discount rate are necessary
and sufficient conditions for the existence of a balanced growth equilibrium
path. Similarly, they also show that asymptotically constant elasticity of
marginal utility and discount rate are necessary and sufficient for the exis-
tence of a unique asymptotically balanced growth equilibrium path, defined
as a solution to an optimal growth problem such that al variables grow at
asymptotically constant growth rates. While our model shares this prop-
erty of asymptotically balanced growth equilibrium path (namely that in
the very long-run, i.e., when , variables depending on time approach a given
constant, endogenously determined), with respect to the strand of literature
mentioned above, the novelty we introduce in our paper consists in link-
ing the non-constancy of the time preference rate to the non-constancy of
population growth. The remainder of the paper is organized as follows. In
section 2 we describe the model economy and discuss in more detail our
assumption of a logistic-type function for the evolution over time of the ra-
tio of aggregate public expenditure to total GDP. In Section 3 we introduce
some mathematical preliminaries, while in Section 4 we solve for the model’s
asymptotically balanced growth equilibrium path. In Section 5 we perform
numerical analysis in order to study the dynamics of some key-variables of
the model over time and Section 6 concludes the paper.

2 The model

We extend here the model of Barro (1990) in which the government’s pur-
chases of goods and services (G) enter into the production function. In more
detail we consider a closed economy where a homogeneous final good (Y) is
produced competitively by employing four different inputs: physical capital
(K), labor (L), public goods (G) and ideas (a proxy for the available level
of technology, A). If the production function takes the Cobb-Douglas form,
its specification for a generic representative firm producing final goods is
supposed to be:

Y (t) = A(t)ηK(t)αL(t)θG(t)1−α−θ−η (1)

where η, α, θ ∈ (0, 1). A peculiarity of equation (1) is that it displays con-
stant returns to scale to the four factor-inputs (A, K, L and G), jointly
considered. Since all these factors are reproducible, this property of the ag-
gregate production function represents a sufficient condition for endogenous
growth. Once produced, output (Y ) can be either consumed (C), or used
as a public good (G) or invested in (private) physical capital. For the sake
of simplicity we assume that physical capital does not depreciate over time
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(its instantaneous depreciation rate is always equal to zero). Thus, the law
of motion of the aggregate physical capital stock is given by:

K̇(t) = Y (t)− βKK(t)− C(t)−G(t) (2)

We depart from the basic Barro’s (1990) model in three fundamental re-
spects. The first two concern the fact that we assume both (exogenous)
technological progress and population change. As for the level of technol-
ogy, we postulate a simple exponential growth process:

Ȧ(t) = gAA(t) (3)

whereas we posit a logistic-like function for the change of population over
time:

L̇(t) = nL(t)dt (4)

By using the first law of motion (the one for At) we assume that the level
of technology can grow over time without bounds. On the other hand, the
law of motion of Lt allows us replicating the Malthusian result that the
size of the population becomes asymptotically constant - i.e., when t → ∞
population growth goes smoothly to zero. The last, and probably the most
important, difference with respect to the basic Barro’s (1990) model con-
cerns our assumption on the evolution over time of the ratio of aggregate
public expenditure to total income (G

Y ). While that paper takes such a ratio
as constant, we consider the case where the derivative of G

Y with respect
to time follows a logistic-type trajectory. The logistic model assumption to
describe the dynamics of the ratio of public expenditures and income is due
to Florio and Colautti (2005). However in their paper they did not include
it in a fully developed growth model. Before discussing this assumption,
we briefly mention some earlier attempts to consider public expenditure in
economic growth theory and how this approach is innovative and different
from the ones in the literature. Government spending G appears in stan-
dard exogenous growth models as purchases of goods and services (see Barro
and Sala-i-Martin, 2004, 143 and ff). In a variation of the above mentioned
model, when G is included in the production function, the G

Y ratio is sup-
posed to be constant along the dynamic path of the economy. This feature
is unattractive since over the last one hundred years we have observed a
dynamics of this ratio. For instance it was well below 0.10 in the US around
1900-1910, and above 0.30 around 1990; the ratio increased in a similar way
in many other countries over the twentieth century. To explain why there is a
sustained demand for government services, we consider public expenditures
as interacting with other production factors. Barro and Sala-i-Martin(2004,
pp 220 and ff) consider an AK-type model where capital is augmented with
public services. Given our definition of productive public expenditure, we
prefer to relate their effects to all production factors. After all, most of
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public consumption is related to education, health and welfare. Moreover,
the Barro and Sala-i-Martin model of endogenous growth still assumes that
the government chooses a constant G

Y ratio. This is clearly and ad hoc as-
sumption.
One of the earliest contribution to the study of the long term trend of pub-
lic expenditure was Wagner (1894), who prompted a huge flow of literature,
reviewed by Peacock and Scott (2000). Under the ’Wagner’s law’, public ser-
vices are considered as a bundle of goods with elasticity to income greater
than one. Focussing on logarithmic derivatives of public expenditure (g)
and national income (y), it is easy to see that d

dt
G
Y = hG

Y where h = g − y,
or the difference in growth rates of government and the economy. In this
context, h can be seen also as the product of g and income elasticity of
public expenditure minus one: thus for any positive value of g, income elas-
ticity should be more than one to generate positive h, which is consistent
with the intuition by Wagner and several recent contributions to the public
expenditure literature. More interestingly, for a constant h to hold, it is pos-
sible to combine different offsetting changes of growth and income elasticity.
However the resulting process is exponential, and this is very implausible
in the long term (at least if a country cannot incur in public debt without
any limit). As government becomes bigger, fiscal resistance increases, and
this acts as a brake to Wagner’s law: the importance of this factor may
vary among countries, as the income elasticity of public expenditures do,
but despite different country specificities, it is helpful to model a common
underlying process. If fiscal resistance depends upon the deadweight loss of
distorted taxation, under the assumption of balanced budget, Wagner’s law
is replaced by a more complex pattern. The excess burden of taxation (the
Pigou’s effect) by a standard approximation in welfare economics literature
depends upon the price elasticity of private goods and the average tax rate.
Under balanced budget, the ratio of the excess burden of taxation to Y , is
simply one half of the price elasticity k multiplied by the square of G

Y = T
Y .

The combined action of the Wagner Law and the Pigou’s Effect generates
a S-shaped trajectory. Because the excess burden of taxation is quadratic,
when we assume long-run balanced budget, the resulting differential non-
linear equation is a Bernoulli in G

Y and can be integrated as a logistic.
Modeling the dynamics of government as a logistic process has a number
of attractive features. The two parameters in a logistic process, h and k,
have some nice properties that are easy to interpret: h

k is the upper limit
of G

Y , thus if we can estimate the parameters (and a set of country specific
variables) we can predict where and when G

Y increase stops, so that we get
a steady state of the ratio of public expenditure to income. A saddle point
occurs at t = 1

h ln(B), where B is a constant and there G
Y is half its upper

limit. At the saddle point year, Wagner’s law is reversed and Pigou’s effect
starts to prevail. Florio and Colautti (2005) provide an empirical test of
the logistic dynamics of G

Y for around one century data (1870-1990) and five
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countries (US, Germany, France, UK and Italy) and figure out that a logistic
process fits the data better than an exponential process (perhaps except for
Italy, a country with notoriously high public debt). As mentioned above,
the empirical model is however not integrated in a growth model, and in
this paper we go beyond it into two ways: first, we study the interaction of
public expenditure with income growth through its interaction with popu-
lation change, and - second - we explore the mutual consequences on public
expenditure on growth of a dynamic setting where there are deterministic
constraints on demographic trends and technological progress. As a first
step the differential equation for the G

Y dynamics we consider here is fully
deterministic and it replaces the G

Y constant assumption of earlier contribu-
tions.
Under the assumptions stated above in this section and with a logarithmic
individual utility function, the problem of a representative infinitely-lived
household seeking to maximize under constraints its lifetime discounted util-
ity can be written as:

max
C(t)

∫ +∞

0
ln(c(t))L(t)e−ρtdt (5)

subject to: 




K̇(t) = Y (t)− βKK(t)− C(t)−G(t)
Ȧ(t) = gAA(t)dt + σAA(t)dW (t)
L̇(t) = nL(t)− dL2(t)
d
dt

(
G(t)
Y (t)

)
= µ

(
G(t)
Y (t)

)
− γ

(
G(t)
Y (t)

)2

where c(t) ≡ C(t)
L(t) and K(0) = K0, A(0) = A0, L(0) = L0 and G(0) = G0.

3 Mathematical preliminaries

By easy calculations, the objective function can be rewritten as
∫ +∞

0
ln(c(t))L(t)e−ρtdt =

∫ +∞

0
(ln(C(t))− ln(L(t)))L(t)e−ρtdt

=
∫ +∞

0
ln(C(t))L(t)e−ρtdt−

∫ +∞

0
ln(L(t))L(t)e−ρtdt

=
∫ +∞

0
ln(C(t))L(t)e−ρtdt + Ω (6)

where

Ω = −
∫ +∞

0
ln(L(t))L(t)e−ρtdt (7)

is a constant. Since a constant does not have any influence on the maxi-
mization, the model can be rewritten as

max
C(t)

∫ +∞

0
ln(C(t))L(t)e−ρtdt (8)
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subject to 




K̇(t) = Y (t)− βKK(t)− C(t)−G(t)
Ȧ(t) = gAA(t)dt
L̇(t) = nL(t)− dL2(t)
d
dt

(
G(t)
Y (t)

)
= µ

(
G(t)
Y (t)

)
− γ

(
G(t)
Y (t)

)2

The third and the fourth differential equations are Bernoulli-type equations
which can be solved in a closed form. For the third one, by easy calculations
one can prove

L(t) =
n

d + ( n
L0
− d)e−nt

(9)

On the other hand for the fourth differential equation we get

G(t)
Y (t)

=
µ

γ + (µY0
G0
− γ)e−µt

(10)

The last expression implies that G is a function of A, L and K since

G(t) =
µ

γ + (µY0
G0
− γ)e−µt

A(t)ηK(t)αL(t)θG(t)1−α−θ−η (11)

and then

G(t) =

(
µ

γ + (µY0
G0
− γ)e−µt

A(t)ηK(t)αL(t)θ

) 1
α+θ+η

(12)

If we replace this expression into 8 the problem can be reduced to

max
C(t)

∫ +∞

0
ln(C(t))L(t)e−ρtdt (13)

subject to





K̇(t) =
(

1− µ

γ+(
µY0
G0
−γ)e−µt

)
Y (t)− βKK(t)− C(t)

Ȧ(t) = gAA(t)
L̇(t) = nL(t)− dL2(t)

G(t) =
(

µ

γ+(
µY0
G0
−γ)e−µt

A(t)ηK(t)αL(t)θ

) 1
α+θ+η

and initial conditions K0, L0 and A0. By substituting the last expression in
the production function Y , the optimization problem can be rewritten as

max
C(t)

∫ +∞

0
ln(C(t))L(t)e−ρtdt (14)
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Figure 1: Gt
Yt

subject to

K̇(t) =

(
1− µ

γ + (µY0
G0
− γ)e−µt

) (
µ

γ + (µY0
G0
− γ)e−µt

)1−α−θ−η

A(t)
η

α+θ+η K(t)
α

α+θ+η L(t)
θ

α+θ+η − βKK(t)− C(t)
Ȧ(t) = gAA(t)
L̇(t) = nL(t)− dL2(t)

By defining

ξ(t) =

(
1− µ

γ + (µY0
G0
− γ)e−µt

) (
µ

γ + (µY0
G0
− γ)e−µt

)1−α−θ−η

=
(

1− G(t)
Y (t)

) (
G(t)
Y (t)

)1−α−θ−η

(15)

we get

max
C(t)

∫ +∞

0
ln(C(t))L(t)e−ρtdt (16)

subject to

K̇(t) = ξ(t)A(t)
η

α+θ+η K(t)
α

α+θ+η L(t)
θ

α+θ+η − βKK(t)− C(t)
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Figure 2: ξ(t)

Ȧ(t) = gAA(t)
L̇(t) = nL(t)− dL2(t)

4 The (asymptotically) balanced growth path equi-
librium of the model

The Hamilton function associated with this problem is the following

H(t) = ln(C(t))L(t)e−ρt + λK(t)K̇(t) (17)

A necessary and sufficient condition for the optimality is stated by the first
order conditions (FOCs) which read as
{

∂H
∂C = L(t)e−ρt

C(t) − λK(t) = 0
∂H
∂K = λK( α

α+θ+η ξ(t)A(t)
η

α+θ+η K(t)
α

α+θ+η−1L(t)
θ

α+θ+η − βK) = − ˙λK(t)

The first condition of the above system implies that

ln
(

L(t)e−ρt

C(t)

)
= ln(λK(t)) (18)

and by differentiating both sides with respect to t, we have

L̇(t)
L(t)

− ρ− Ċ(t)
C(t)

=
˙λK(t)

λK(t)
(19)
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which implies

Ċ(t)
C(t)

=
L̇(t)
L(t)

−ρ+
α

α + θ + η
ξ(t)A(t)

η
α+θ+η K(t)

α
α+θ+η−1L(t)

θ
α+θ+η −βK (20)

If we substitute the constraint involving K into 20 we get

Ċ(t)
C(t)

=
L̇(t)
L(t)

− ρ +
α

α + θ + η

(
K̇(t)
K(t)

+ βK +
C(t)
K(t)

)
− βK (21)

We now introduce the definitions of Balanced Growth Path (BGP) and
Asymptotically Balanced Growth Path (ABGP) equilibrium.

Definition 4.1. [4] A BGP equilibrium is a long-run equilibrium where all
variables depending on time grow at constant (possibly positive) exponential
rates. A BGP equilibrium is said to be nondegenerate if all growth rates are
strictly positive.

Definition 4.2. [21] An ABGP equilibrium is a long-run equilibrium where
the growth rates of all variables admit a finite limit when t→∞. An ABGP
equilibrim is said to be nondegenerate if all these limits are strictly positive.

Next section will be devoted to the simulation of the dynamics of all vari-
ables involved in this model. Through numerical simulations we will show
that this model admits an Asymptotically Balanced Growth Path (ABGP)
equilibrium.

5 Numerical simulations

In this section we consider the following values for the unknown parameters:
α = 0.36, η = 0.21, θ = 0.19, gA = 6.4%, n = 0.0144, ρ = 0.01, G0

Y0
= 20%.

Moreover, we consider the following initial conditions: L(0) = 1, A(0) = 1,
βK = 0, G(0) = 4, K(0) = 103.33. As for the capital share (α), Blanchard
(1997) emphasizes that capital shares in France, Germany, Italy and Spain
exhibited large increases starting in the early 1980s and continuing through
the 1990s. The magnitude of the increase is approximately from 0.32 to
0.40. According to Jones (2003) the same can be also said, as an example,
for Denmark as well. Denmark’s capital share, indeed, has risen from about
0.3 to about 0.4 over the last quarter of the century. Based on the behaviour
of the capital share in OECD countries over the period 1950-1997 (Jones,
2003, Figure 1, p.8) we take for the capital share (α) a value of 0.36 - see
also below. The labor-force growth rate (n = 0.0144) and the values for
gA (6.4%) and η (0.19) are taken from Jones and Williams (2000, Table 1,
p.73). The first parameter (n) represents the average growth rate of the
labor-force in the U.S. private business sector over the period 1948-1997.
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We take this value for the growth rate coefficient in the logistic-like function
giving the change of population size over time. The other two parameters
(gA and η) are obtained in the following way. Jones and Williams (2000)
consider a model where a homogeneous final output (Y ) is produced by:

Yt = Lα
t

(
At∑

i=1

xρ(1−α)
it

) 1
ρ

(22)

where L is the labor-force, α is the labor-share, A is the level of technol-
ogy (approximated by the number of varieties of intermediate capital goods
existing at time t), xi is the amount of the i-th intermediate capital good
employed at time t in final output production and ρ is a parameter deter-
mining the elasticity of substitution between intermediate capital goods. In
a symmetric equilibrium where each producer of intermediate capital goods
produce the same amount of output

(
xit = xt = Kt

At

)
, with Kt representing

the total quantity of intermediate capital goods being produced at time t,
the aggregate production function above can be recast as:

Yt = A
1
ρ−(1−α)

t Lα
t K1−α

t (23)

With a labor-share of 0.64 - thus, a capital share (1−α) of 0.36 - and ρ = 1.8
the exponent of At, that we denoted by η in our model, is approximately
equal to 0.196 (see Jones and Williams, Table 2, p.75). Given an estimate of
0.0125 for the average TFP growth rate in the U.S. private business sector
(σgA) over the period 1948-1997 and with this leads to a value of gA close
to 6.4We give a value of 0.21 to θ. The reason is as follows. If technological
progress were embodied in humans (i.e., At = ht, with h denoting the aver-
age quality of population or per-capita human capital), then AtLt would give
the aggregate stock of human capital. Estimates of Jorgenson et al. (1987)
suggest that with an aggregate Cobb Douglas-type production function the
human capital share (in our case the sum of η and θ) is between 0.4 and 0.5.
If we fix such a share to 0.4 (Barro and Sala-i-Martin, 2004, p.60), and with
η = 0.19, we easily get a value for θ equal to 0.21. With these parameter
values, and in particular with η = 0.19, θ = 0.21 and α = 0.36, it follows
that 1 − α − θ − η = 0.24. This number is in line with the main findings
of Aschauer (1989; 1990) on the influence of core infrastructure investment
spending on total output. Following Oliver (1982), who estimates the coeffi-
cients of the logistic curve for the population of Great Britain from 1801 to
1971, we take a value of 10 millions for the starting population size (L0) and
a value of 63 millions for the population saturation level (Ls). Accordingly,
with these values and with n = 0.0144, the last parameter of interest in
the logistic curve for population (d) is taken as equal to 0.0144/63 millions.
Concerning the long-run discount rate, the value we are considering in the
simulation is ρ = 1% which can be found in The Green Book, H.H. Treasury
([12]).
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Figure 3: Ct

6 Concluding remarks

We have considered an economic growth model involving physical capital,
technological progress, population dynamics and public expenditure. We
assume logistic evolution equations for both population and public expen-
diture. While the use of a logistic-like function for population change is not
new, the use of such a function in stating the behavior over time of the public
expenditure to the GDP ratio deserves analysis since it represents the main
novelty of this contribution. The use of the logistic model for describing the
dynamics of the ratio of public expenditures and income is due to Florio and
Colautti (2005). Within this framework we are interested in analyzing the
dynamics of such variables (both in aggregate and in per-capita terms) as
consumption, output and physical capital and their growth rates. Through
numerical simulations, we show that this model admits an (asymptotically)
balanced growth path equilibrium.
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