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Abstract 
 
 

Recently van De Van, Creedy and Lambert (2001) and Lambert and Urban (2005) have reconsidered the 

original Aronson, Johnson and Lambert (1994) decomposition of the redistributive effect in order to 

individuate the optimal bandwidth that should be used in decomposing the redistributive effect when 

groups with close pre-tax incomes are considered. The methodology proposed by van De Van, Creedy 

and Lambert (2001) suggests choosing as the optimal bandwidth the one which maximizes the ratio 

between the potential effect V (which depends on the bandwidth) and the actual redistributive effect RE 

(which is invariant). Lambert and Urban (2005) discuss a set of further possible decompositions of the 

redistributive effect together with a decomposition of the Atkinson-Plotnick-Kakwani index into three 

terms. In this paper we want to contribute to throw some more light on the behavior of three of the main 

decompositions analyzed by Lambert and Urban (2005) in order to look for criteria for the choice of a 

bandwidth which allows the three different definitions of potential redistributive effect to assume as 

coherent as possible values and, in the meanwhile, to catch as much as possible of the potential vertical 

effect. We suggest looking for the bandwidth (or for a set of bandwidths) where the maximum distance 

among the different potential vertical effects is minimum, provided that the greatest of the three indexes is 

not lower than the global maximum assumed by the lowest of them, over the whole income distribution 

range. 
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1. Introduction 
 
Decomposing redistributive effect across groups of pre-tax equals into vertical, 

horizontal and reranking effect has been intensively studied in the last years. The 

original work by Aronson, Johnson and Lambert (1994), henceforth AJL, considers 

exact pre-tax equals in portioning the pre-tax income distribution. 

As van de Ven, Creedy and Lambert (2001), henceforth VCL, pointed out, in the real 

word taxation this is not the case: only groups with close pre-tax incomes can be 

considered. They got through this problem in order to individuate the optimal 

bandwidth that should be used in decomposing the redistributive effect. Therefore, VCL 

methodology suggests choosing as the optimal bandwidth the one which maximizes the 

ratio between the potential effect (which depends on the bandwidth) and the actual 

redistributive effect (which is invariant). Here a problem arises as this ratio may have 

more than one relative maximum and presents a layout which may be irregular, and 

somewhere quite irregular; as a consequence, identifying univocally the maximum is 

not so obvious (Vernizzi and Pellegrino 2007). 

Lambert and Urban (2005), henceforth LU, present an exhaustive discussion on a 

complete set of possible redistributive effect decompositions, and introducing new 

indexes based on the taxation of close equals by their average tax rate. 

In this work we desire to contribute to VCL and LU discussion with some suggestions 

about the choice of a convenient bandwidth, by intensively looking to the empirical 

analysis. We would conclude to look for the bandwidth (or for a set of bandwidths) 

where the maximum distance among the considered possible definitions of potential 

vertical effect is minimum, provided that the greatest of the three indexes is not lower 



 2

than the global maximum assumed by the lowest of the three indexes over the whole 

income distribution range. 

 

The structure of the paper is as follows. In Section 2 we recall how the original AJL 

decomposition should be applied in the real world where strict equals groups are rare 

and, consequently, they must be replaced by “close equals” groups; to overcome this 

problem, according to LU’s suggestions, alternative RE decompositions are introduced 

together with the decomposition of the Atkinson-Plotnick-Kakwani index (henceforth 

APKR )1. In section 3 we report the values the indexes assume at bandwidth limits, that is 

either when the bandwidth tend to zero or when it cover the whole income distribution 

range; then we sketch some preliminary a priori considerations about some aspects of 

their behavior. The empirical behavior of indexes is analyzed in Section 4. Section 5 

discusses whenever a bandwidth with “optimal” or at least “desirable” properties can be 

identified. Section 6 concludes. 

2. Redistribution and reranking indexes 
 
Let yG  and TyG −  be the Gini index on the gross and net incomes respectively. The 

redistributive index RE is equal to Tyy GGRE −−= . It is well-known that the Gini 

coefficient fails to decompose across subgroups into between and within group 

inequality components in case subgroup income ranges overlap. When considering the 

pre-tax income parade, if groups are selected in a sequential order, such that pooling all 

groups incomes are in a non decreasing order, we have that B W
y y yG G G= + , where B

yG  

                                                 
1 The decomposition of RAPK is described and discussed in Urban and Lambert (2005); for further details see Vernizzi (2007). 
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is the between-group Gini pre-tax index and W
yG  is the within-group Gini pre-tax 

index2. However, if post-tax income groups contain the same subjects they did before 

taxation, it is no longer granted that the after tax maximum value in the i-th group is not 

greater than the minimum value in the 1+i -th group and that no intersection (or 

overlapping) effect appears among groups. 

If taxation induces overlapping among groups, the post-tax Gini index becomes 

B W t
y T y T y T y TG G G G− − − −= + + , where 3 ( )t AJL B W

y T y T y T y TG R G G G− − − −= = − + . 

When exact equals are considered 

In their seminal paper, AJL not only organize groups so that no overlapping effect exists 

for pre-tax groups, but also implicitly assume that for the after-tax income parade (i) the 

group averages maintain the same ranking as before taxation and (ii) the within group 

orderings remain the same as before taxation. If this is the case, the post-tax 

concentration index (evaluated when post-tax incomes are ordered according to the 

order they had before taxation) is ( )B W
y T y TG G− −+ , so that AJL APKR R= , being APKR  the 

Atkinson-Plotnick-Kakwani reranking index4. 

                                                 
2 B

yG  is the Gini index for pre-tax incomes when within each group all incomes are substituted by their group average; 

, ,
W
y k y k y

k
G a G= ∑ , where ,k yG  is the Gini index for the k-th group and ,k ya  is the product of the k-th group  population share and 

pre-tax income share. 
3 B

y TG −  and , ,
W
y T k y T k y T

k
G a G− − −= ∑  are the analog forms for B

yG  and W
yG  when incomes have been taxed; in particular ,k y Ta −  

is the product of the k-th group population share and post-tax income share. t
y TG −  is what Dagum (1997) calls “the transvariation 

term”. In UL notation 4
AJL

y TR G D−= − , where 4
B W
y T y TD G G− −= +  is the concentration index for the after tax income parade, 

ordered according to non decreasing group averages and, within each group, in a non decreasing order. The relations which involves 
Gini and concentration indexes components are analyzed, e.g., in Vernizzi (2007). 
4 In UL notation 1D  is the concentration index for after-tax incomes, when ordered according to the before taxation ranking. 1D  

may be different from 4
B W
y T y TD G G− −= +  and, in general, it is. In our notation 1D  is y TD − . 
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If we split yG  and TyG −  into the above described components, as AJL do, the 

redistributive effect can be written as ( ) ( )B B W W APK
y y T y T yRE G G G G R− −= − − − − . A 

further simplification can be applied when the analysis is limited to the case in which 

the population groups contain exact pre-tax equals, which implies 0=W
yG  and 

y
B
y GG = . In this case the redistributive effect can be expressed as 

( )B W APK
y y T y TRE G G G R− −= − − − . 

AJL name ( )B
y y TG G −−  the vertical potential redistributive which looses part of its 

potentiality whenever either the within-group inequality index W
TyG −  or the group 

overlapping index ( )AJL t B W
y T y T y T y TR G G G G− − − −= = − + APKR=  becomes different from 

zero after taxation. 

When close equals are considered 

However, as observed before, this decomposition can be correctly applied provided that 

each group is composed by subjects with the same pre-tax income and taxation does not 

modify either the ranking among group averages or the within-group rankings (van de 

Ven, Creedy and Lambert, 2001; Urban and Lambert, 2005; Vernizzi, 2006). 

In the real world, even for gross incomes, the within-group Gini index, W
yG , is generally 

different from zero, as only groups with close pre-tax incomes can be considered. As a 

consequence, only bandwidths of income containing close-equals must be chosen. 

Being more general, neither post-tax group means maintain the same order they had for 

the pre-tax income parade nor, within each group, the order of the incomes remains 

unchanged in the transition from the pre- to the post-tax incomes; in this case the 



 5

residual of the RE decomposition is generally not equal to the APK index, whichcan be 

more generally defined as ( )APK B W
y T y T y T y T y TR G D G D D− − − − −= − = − + . y TD −  is the 

concentration index for the post-tax income parade when incomes are ranked according 

the pre-tax income non-decreasing ranking; B
y TD −  and W

y TD −  are, respectively, the 

between and the within group concentration indexes for post-tax income parade5. We 

can confirm these violations using a SHIW dataset, even if the magnitude of these 

unpleasant outcomes depends on the income range (bandwidth) chosen for each group. 

It is worth to stress that, according to empirical evidence6, the income bandwidth acts in 

opposite directions towards group reranking and within-group reranking: the larger the 

bandwidth is, the less probable is the former and the more frequent happens to be the 

latter. 

In addition, as the bandwidth increases, W
yG  can be no more close to zero, so that the 

redistributive effect can be no more evaluated as 

RE = ( )B W APK
y y T y TG G G R− −− − − ( )B B W APK

y y T y TG G G R− −= − − − ; it becomes more realistic 

to turn back to the more complete decomposition 

 ( ) ( )B B W W AJL VCL VCL AJL
y y T y T yRE G G G G R V H R− −= − − − − = − −    (1) 

having defined ( )VCL B B
y y TV G G −= −  and VCL W W

y T yH G G−= − . 

When using the above decomposition, one gives back the idea of constituting close-

equals groups, and focuses on the eventual enlargement of the within-group inequality 

                                                 
5 B

y TD −  is defined as the concentration index when all incomes inside each group are substituted by the group income average and, 

moreover, groups are ordered according to pre-tax group averages. , ,
W
y T k y T k y T

k
D a D− − −= ∑ , where ,k y TD −  is the concentration 

index for the k-th group, when after tax incomes are ordered according to their pre-tax order,  and ,k y Ta −  is the product of the k-th 

group  population share and post-tax income share. 
6 Lambert and Urban (2005), Vernizzi and Pellegrino (2007).  
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( )W W VCL
y T yG G H− − =  term, together with the group overlapping term AJLR , to measure 

the loss in potential vertical redistribution effect which is measured by 

( )B B VCL
y y TG G V−− = . 

UL present other RE decompositions which holds also either when groups do not 

include just equals or between or within groups rerankings are introduced by taxation. 

Here we shall consider two of these decompositions, both of them apply the idea of 

smoothed taxation within group, which is introduced by UL in coherence with the 

principle of close equals groups: if groups contain close equals, their incomes should be 

taxed by a same tax rate, which can be properly estimated by the group average tax rate. 

After having applied a same tax rate to all incomes in group k, the Gini index for group 

k remains exactly equal to the pre-tax ,k yG ; however the smoothed within group Gini 

index , ,
SW
y T k y T k y

k
G a G− −=∑  is generally different from , ,

W
y k y k y

k

G a G=∑ , because in 

general , ,k y k y Ta a −≠ . 

UL define AJL AJL AJLRE V H R= − − , where ( )AJL B SW
y y T y TV G G G− −= − +  and 

AJL W SW
y T y TH G G− −= − , so that: 

 ( ) ( )AJL AJL AJL B SW W SW AJL
y y T y T y T y TRE V H R G G G G G R− − − −= − − = − − − − −  (2) 

In expression (2) the potential vertical effect is measured by the difference between the 

pre-tax Gini index and the Gini index for an artificial post tax income parade, which, by 

constructions, excludes any group overlapping7. 

                                                 
7 UL define AJLV  and AJLH  in an apparently different way. They define 5D  and 6D  as concentration indexes calculated on 

smoothed net incomes: the 5D  index ranks groups according to the same order they had before taxation, even if the taxation 

changed the income average order among groups; the 6D  index ranks groups that are ranked in a non decreasing order with respect 
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The “pure” horizontal inequity is measured by the enlargement of within group 

inequality, with respect to what would induce a smoothed taxation; group overlapping 

introduced by taxation, is measured by AJLR  as in equation (1). 

Both expression (1) and (2) keep into account only a part of horizontal inequity, 

eventually introduced by a taxation system, in fact the two RE decompositions do not 

consider within group and between group eventual rerankings. Actually, the Atkinson-

Plotnick-Kakwani index APKR  can be decomposed into three terms 8: 

APK AJL EG WGR R R R= + + .  Together with the overlapping term AJLR  which has been 

already described, there are two further terms: the former, EGR , measures the horizontal 

inequity due to the reranking of the mean post-tax income among groups, whilst WGR  

measures the reranking effect due to within groups reshuffling. More in detail 9 

EG B B
y T y TR G D− −= −  and WG W W

y T y TR G D− −= − . 

The latter UL decomposition we consider is APKRE V H R= − − , where 

( )B SW
y y T y TV G D G− −= − +  and W SW

y T y TH D G− −= − .  Then:  

 ( ) ( )APK B SW W SW APK
y y T y T y T y TRE V H R G D G D G R− − − −= − − = − − − − −   (3) 

UL notice that decomposition (3) has the advantage of synthesizing the whole 

information set into one equation10. Table 1 summarizes Gini and concentration indexes 

definitions. 

TABLE 1 ABOUT HERE 

                                                                                                                                               
to their post-tax average incomes. 3D  is the concentration index for (non-smoothed) after tax incomes, when groups follow the 

same order as before taxation, whilst within group incomes are in non decreasing order; then 6
AJL

yV G D= −  and 

4 6 3 5
AJLH D D D D= − = − . 

8 Lambert and Urban (2005). See also Vernizzi (2006) for analytical details. 
9 UL define 4 3

EGR D D= −  and  3 1
WGR D D= − . 

10 UL define V and H, respectively, as 5yV G D= −  and 1 5H D D= − . 
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What decomposition is more suitable to analyze the redistributive effect and what 

bandwidth should be chosen is a problem not definitely solved: VCL suggest choosing a 

bandwidth where ( )VCLV RE  is maximum. This ratio may have more than one relative 

maximum and presents a layout which may be irregular, and somewhere quite irregular; 

as a consequence, identifying univocally the maximum is not so obvious. We got 

through this problem. 

3. A priori considerations on indexes behavior 
 
On a priori considerations, we can easily state the values that the here considered 

indexes assume at bandwidth limits, that is either when bandwidth tends to zero or the 

maximum available range (Table 2). 

TABLE 2 ABOUT HERE 

When the bandwidth tends to zero, VCL AJLV V RE= = , y y TV G D −= −  (the Reynolds-

Smolenky total redistribution index) and 0VCL AJLH H H= = = ; it follows that at 

bandwidth zero VCL AJLV V V≥ = . Conversely, when the bandwidth is maximum, that is 

equal to the observed income range, 0VCL AJLV V V= = = , VCL AJLH H RE= = −  and 

( )y y TH G D −= − − , so that when the bandwidth coincides with the maximum range 

VCL AJLH H H≤ = . In what it concerns the reranking effects, we have that when the 

bandwidth is zero 0AJL WGR R= =  and EG APKR R= , whilst for maximum bandwidth 

0AJL EGR R= =  and WG APKR R= . 

The difference AJLV V−  is equal to EGR , which being non-negative, implies V  to 

dominate AJLV . Less evident is the relation between VCLV  and AJLV  and, especially, that 
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between V  and VCLV : in fact VCL AJL SW W
y T yV V G G−− = −  and 

( )VCL EG SW W
y T yV V R G G−− = − − . 

In order to throw some light on these relations, we recall how W
yG  and SW

y TG −  can be 

represented as weighted sums of average absolute differences, calculated within each 

group: 

 

( )
( )

2
,2

2
,2

1
2

1 1
2 1

K
W
y i y i

i
K

SW
y T i y i i

i

G n
n

G t n
n t

µ

µ−

= ∆

= ∆ −
−

∑

∑
 (4) 

where µ is the average income for the whole subjects considered in the sample, n is the 

number of equivalent subjects in the sample, ni is the number of equivalent subjects 11 in 

group k, ti is the i-th group average tax rate, t  is average tax rate for the whole sample, 

( ) ( )2
, , , , ,

1
2

i ik k

i y i i h i s i s i h
s h s

n y y n n
= >

∆ = −∑∑ , having defined with ki the number of cases 

registered in group i and with ni,s the weight associated to income yi; within each group 

incomes are ranked in a non decreasing order. We can then write: 

( )
( )

( )
( )

2
,2

1

2
,2

1

1
1

1
2 1

K
SW W
y T y i y i i i

i

K

i y i i
i

G G G n t t
n t

t t n
n t

µ
µ

µ

−
=

=

− = − =
−

= ∆ −
−

∑

∑
   (5) 

Due to the asymmetry of income distributions, which makes bandwidths in the left tail 

to be more crowded than those in the right tail, in (5) positive ( )it t− ’s, are likely to 

                                                 
11 A sum of equivalent subjects may be a non integer number. 
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receive a weight more than proportional than the negative ( )it t− ’s; if this is the case, 

VCLV  is expected to be not lower than AJLV 12. 

Turning to V  and VCLV , the sign of the difference VCLV V−  depends on the difference 

( )EG SW W
y T yR G G−− − , where SW W

y T yG G− −  is likely non negative, due to the above 

considerations, and EGR  is surely non-negative. So, on a priori considerations, we can 

but conclude that for the bandwidth tending to zero VCLV V−  has APKR  as its limit, and 

for the bandwidth tending to the maximum range, VCLV V−  has zero as its limit. 

Turning now to the horizontal loss measures, we observe that AJLH H−  is equal to 

WGR , the within group reranking index13, which is non-negative and that the difference 

between  VCLH H−  is equal to the sum of WGR  and ( )SW W
y T yG G− − : being the former 

always non-negative and the latter likely non negative, we expect that  AJLH H≥ , 

moreover given that ( )SW W
y T yG G− −  is non-negative, VCLH  should be not lower than 

AJLH , so that, summarizing, we expect that VCL AJLH H H≥ ≥ , where the second 

inequality always holds. 

4. Empirical analysis 
 
In this section we investigate by an empirical analysis how the group bandwidth 

influences the components of the redistribution index VCLV , VCLH  and AJLR  in equation 
                                                 
12 For instance when the income range is split into two groups, each having the same spread but not necessarily the same number of 
subjects, being ( ) ( )1 1 1 2 2 2 1 1 2 2t t n t n n nµ µ µ µ= + +  and assuming that ∆1,y=∆2,y=∆·,y, we can write 

( ){ } ( ) ( ){ }2 2 2
, 1 1 2 21 1SW W

y T y yG G n t t t n t t nµ− ⋅⎡ ⎤ ⎡ ⎤− = − ⋅ ∆ − + − =⎣ ⎦ ⎣ ⎦ ( ){ } ( )2
2 1 1 2 1 21 1n t n n n nµ µ µ⎡ ⎤− ⋅ −⎣ ⎦  which is greater than zero if 

1 2n n> . 

13 
( )

( ) ( )
( )

( )2 2
, ,2 2

1 1

1 11 1
2 1 1

K K
WG W W APK

y T y T i y T i y T i i i i i i i
i i

R G D G D n t R n t
n t n t

µ µ
µ µ− − − −

= =
= − = − − = −

− −
∑ ∑ , having defined with Ri

APK 

the Atkinson-Plotnick-Kakwani for the i-th group. 
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(1), AJLV  and AJLH  in equation (2), and V  in equation (3), together with the 

components of the Atkinson-Plotnick-Kakwani index APK AJL EG WGR R R R= + + . 

As stated before, our aim is either to contribute to the discussion about the choice of a 

proper bandwidth: a proper bandwidth should catch as much as possible of the potential 

redistributive effect and, in the meanwhile, should get as close as possible measures 

from the three indexes VCLV , AJLV  and V . 

Our experiment was conducted on the basis of the Bank of Italy survey on households 

incomes and wealth (SHIW). The 2004 Italian SHIW dataset provides demographic and 

post-tax income microdata for a representative cross-section of 12,713 taxpayers and 

8,012 households (20,581 individuals). This data were used to obtain gross and net 

incomes according to the Italian Personal Income Tax (Pellegrino, 2007b). In order to 

deal in some way with two different data bases, the experiment was conducted with 

respect to both individual and family equivalent incomes. Equivalent incomes were 

obtained by dividing total family incomes by an equivalence scale; the scale here 

adopted is the Cutler scale which can be expressed as ( )h h hCS NA NC= + βα , having 

(arbitrarily) set 0.5=α  and 0.65=β . Ebert and Moyes (2000) observe that, in 

applying equivalence scales, the choice of the weight may be arbitrary: we consequently 

decided to weigh equivalent incomes by the lower and the upper bound, the former 

being 114 and the latter being the component number associated to each family15. Once 

the 2004 gross income parade was obtained, the 2006 and 2007 distributions were 

estimated considering the impact of the inflation rate (Pellegrino, 2007c). We found that 

results are quite analogous either for weights equal to family components or for all 

                                                 
14 0α β= = . 
15 1α β= = . 
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weights equal to 1; moreover, results are also very similar across years, so that, for the 

sake of simplification, here we only report results referred to year 2004, for individuals 

and for household equivalent incomes - weight 116. Figures 1 and 1bis show the 

behavior of the three potential redistributive effects, VCLV , AJLV  and V, are plotted 

together with the constant line of the Reynolds-Smolenky total redistributive effect. 

The three indexes which measure the loss in horizontal equity, VCLH , AJLH  and H, are 

reported in Figure 2 and 2bis, together with AJLR  and APKR , the latter being constant; 

all the above measures are expressed as percentages of the redistributive effect RE. 

The decomposition of APKR  is represented in Figure 3 and 3bis: AJLR , EGR  and WGR  

are there expressed as percentages of APKR . 

As we noticed in the previous section, in correspondence of a zero bandwidth, both 

VCLV  and AJLV  are equal to RE, whilst V is equal to  y y TG D −− , the Reynolds-

Smolensky redistribution index, which is greater than RE.  For our minimum 

bandwidth, which is 10 euro large, in Figure 1 VCLV  and AJLV  show a 0.7 % increase 

(0.8 % when dealing with family equivalent incomes: Figure 1bis) with respect to the 

limit value for the bandwidth tending to zero, that is RE. Both  Figure 1 the two lines 

are not distinguishable and show a steep ascent up to bandwidths around 300 euro large; 

then AJLV  leaves VCLV  and becomes undistinguishable from V  for bandwidths larger 

than 400, when considering individuals, and larger than 550-600 when considering 

family equivalent incomes. V shows a decreasing trend; before becoming 

undistinguishable from AJLV  it dominates VCLV  and AJLV , then the V line crosses VCLV  

and continues descending together with AJLV , leaving  the VCLV  line above. When the 

                                                 
16 Even if limited to VVCL, HVCL, RAJL, REG and RWG, Vernizzi and Pellegrino (2007) reports all graphs for the three tax systems (2004, 
2004 and 2006), concerning both individuals and family equivalent incomes (weight 1 and weight equal to family components). 
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bandwidth is 3,000 euro large, for individuals the three lines are still greater than RE: 

VCLV  is almost 1.0% greater than  RE (1.2% families), AJLV  and V are only 0.4% greater 

than RE (0.6% families). 

Even if our analysis tries to focus on small bandwidths than LU do, our findings are 

substantially consistent with LU results; what appears to be different is that the lines 

presented by LU look much more regular the ones here represented. Our lines are the 

more irregular the more they depart from the axes origin: the irregularities are more 

similar to irregular waves than to completely random white noises. 

More in detail, we observe that: 

(i) VCL AJLV V  as long as SW W
y T yG G− ; VCLV  becomes greater than AJLV  when SW

y TG −  

becomes sensibly greater than W
yG ;  

(ii) AJLV V  after EGR  becomes 0 ; as long as EGR  is not negligible AJLV V< ; 

(iii) VCLV V  for bandwidths where ( )EG SW W
y T yR G G− − ; VCLV V<  as long as 

( )EG SW W
y T yR G G−> −  and, conversely, VCLV V>  after EGR  becomes lower than 

( )SW W
y T yG G− − . 

FIGURES 1-2bis ABOUT HERE 

Figure 2 and 2bis represent the behavior of the three indexes which measures the 

horizontal effect, together with AJLR , the overlapping index, and APKR , the global 

reranking index; as it is expected, the three indexes here considered, VCLH , AJLH  and H, 

assume a value which is very close to zero when the bandwidth is 10 euro large. H 

presents few and insignificant positive values just for the tiniest bandwidth; then it starts 

a descending trend towards the limit value ( )y y TG D −− − . Conversely in correspondence 
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of bandwidths 10-3,000 large, here considered, VCLH  and AJLH  always present positive 

values. In particular when the bandwidth is 3,000 euro large, VCLH  looks to be still 

increasing, whilst AJLH  has already started the descending trend. Similarly to VCLV , 

AJLV  and V, when bandwidths become large, VCLH , AJLH  and H present relatively 

strong irregularities. 

FIGURES 3-3bis ABOUT HERE 

The decomposition of APKR  is represented in Figure 3 and 3bis: AJLR , EGR  and WGR  

are expressed as percentages of APKR . AJLR , which is zero both at bandwidth zero and 

at bandwidth maximum, shows a quite asymmetric line (as it could be noticed also from 

Figures 2-2bis, where it has just been rescaled by APKR RE ): for individuals, at 10 euro 

bandwidth it has already jumped up to 67% of APKR  (58% for families) and it reaches 

its maximum value, 88%, at the 100 euro bandwidth (86% for families)  then it begins 

to descend and  at a 3,000 euro bandwidth it is roughly at a 25% of APKR . EGR , which 

coincides with is APKR  when the bandwidth is a point bandwidth, is 32,4% of APKR  at 

the 10 euro bandwidth (40% for families); it decreases quite soon and at a 300 euro 

bandwidth is already less that 1% of APKR . WGR appears to be a direct function of  the 

bandwidth, even if at decreasing rates: at a 3,000 bandwidth it is nearly 80% of APKR  

(70% for families).  Similarly to what happens for the potential vertical indexes and the 

horizontal iniquity indexes, as bandwidths becomes large, AJLR  and WGR  present 

relatively strong irregularities: which does happen for EGR , due to the fact that this 

index is quite low for large bandwidths. 
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To better investigate the behavior of VCLH , AJLH  and H, we recall expression (4) where 

W
yG  and SW

y TG −  and W
yG  were represented as weighted sums of average absolute 

differences, calculated within each group: moreover we can similarly define W
y TG −  as 

  

 
( )

2
,2

1
2 1

K
W
y T i y T i

i
G n

n tµ− −= ∆
− ∑  (6) 

  

From (4) and (6) it follows that we can represent VCLH  as: 
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 (7) 

and AJLH  as: 
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2
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1

2
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1

1 1
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K
AJL W SW i i
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∑
 (8) 

For lower income groups, where the tax rate for each subject may be much lower than 

t , ,i y T−∆  may be greater than ( ), 1i y t∆ − , even if , ,i y T i y−∆ ≤ ∆  which may cause VCLH  

to result positive: in fact due to the asymmetry of income distributions, it is likely that 

lower income intervals contain more subjects than higher income groups do, so that the 

weighed sum represented in (5) may result to be positive even if , , ,i y T i y k−∆ ≤ ∆ ∀  . 

Then we can conclude that the VCLH  remains positive until bandwidths are large enough 

to make a sufficient number of ,i y T−∆ ’s –especially in the left hand side of the 
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distribution-  small enough to be less than their corresponding pre-tax ,i y∆ , multiplied 

by ( )1 t− 17.  

When dealing with incomes in the right distribution queue, the contrary happens, but, 

due to the distribution asymmetry, in the left hand tail income groups generally present 

weights greater than those in the right hand tail. 

Turning now to AJLH , being for lower incomes ( ) ( )1 1it t− ≥ − , in the left distribution 

queue, the relation ( ), , 1i y T i y it−∆ ≤ ∆ −  is more likely to be verified than the relation 

( ), , 1i y T i y t−∆ ≤ ∆ − .  this consideration should explain why AJLH  starts to decrease 

much before than VCLH . In any case it is excluded that AJLH  is positive when all groups 

post-tax Gini indexes  are lower than the corresponding pre-tax ones. 

Let’s now define ( ) ( )2
, , , , ,

1
2

i ik k
D
i y T i i h i s i s i h

s h s
n y y n n−

= >

∆ = −∑∑ % % , where ,i hy%  is net income for 

subject h in group i, being incomes here ordered according to pre-tax ranking; we can 

now express H as: 
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1
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1

1
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1 1
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K
W SW i i i
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n t
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n t
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=

−
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−
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∑
 (9) 

Looking at Figure 2 and 2bis an we realize that ( ), 1i y it∆ −  becomes greater than ,
D
i y T−∆  

even when bandwidths are not so large18, at least for the left distribution queue where 

                                                 
17 We observe also that HVCL may be positive even when all groups post-tax Gini indexes  are lower than the corresponding pre-tax 
ones, due two the different weight system: for lower incomes after tax weights should in fact be higher then the corresponding pre-
tax ones and the reverse should hold for higher incomes. 
18 We observe that ,

D
i y T−∆  is ,i y T−≤ ∆ , which helps to explain why H becomes negative much before than HAJL. 
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groups are more crowded, and, consequently, receive a weight which is heavier than in 

the right one. 

Table 3 reports the values for RE and APKR  decompositions, evaluated at bandwidths 

100, 200, 300, 400, 500, 600, 700 and 2,000; together with their standard errors 

obtained by 2,000 bootstrap replications. From the figures reported in the tables it stems 

that the ratios between the indexes and their standard errors are generally quite high, but 

those which concern ( )EGR R . The ratios ( ) { }EG EGR R SE R R range from 6.78 to 

8.13 when the bandwidth is 100 euros, from 0.75 to 2.20 when the bandwidth is 

enlarged up to 700 euros, and they are not greater than 1.36 when the bandwidth is 

2000. It is worth stressing that the 95% bootstrap percentiles are generally quite similar 

to those calculated assuming normality but those related to ( )EGR R ; this result is in 

line with UL findings: their simulations lead to the conclusion that the distribution for 

EGR  is asymmetric while the distributions for the other indexes they consider are 

symmetric and, moreover, that the bootstrap estimated standard error for EGR  is almost 

twice than that of the true distribution. Then we can conclude that the point estimates 

for RE components should be quite reliable. The same should hold for WGR R  and 

AJLR R ; ( )EGR R  stays apart, perhaps due its relatively small magnitude, but not only 

for this reason: WGR R  is small when the bandwidth is 100 euros, nevertheless it shows 

lower standard errors and bootstrap confidence intervals more similar to those obtained 

by the normal distribution. Some cautiousness should be adopted also for H when it 

assumes small absolute values. 

Tables 3 and 4 ABOUT HERE 
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5. On determining an “optimal” bandwidth 
 
VCL propose their decomposition with the idea that, in measuring the vertical effect by 

the pre-tax and post-tax distribution of group income averages, VVCL should eliminate 

either of measurement errors or anomalous values, by averaging within group incomes: 

of course, on one side the larger the groups are the more efficacious the smoothing 

performed by averaging is, but, on another side, the larger the groups are the less equals 

incomes are within groups. VCL suggest to choose the bandwidth which maximizes the 

potential redistributive effect. AJL appears to be quite appealing  for  the horizontal 

effect measure adopted: as we stressed in the previous paragraph, HAJL cannot result in 

being positive when all groups post-tax Gini indexes are lower than the corresponding 

pre-tax ones, which cannot be excluded at all for HVCL. 

H presents the undoubted advantage of been considered together RAPK and then not only 

with RAJL: however its interpretation is not straight as LU notice. 

Looking either at Figure 1 and 1bis in the present paper or to LU figures, we can see 

that, in correspondence of some bandwidths, the three potential redistributive effects are 

quite close, or even coincide. We would observe even closer values when the bandwidth 

tends to cover the whole income range: in this case, however, as already noticed, the 

three indexes would tend to zero and would not capture any potential vertical 

redistribution at all! 

We would then suggest to identify as “optimal” the bandwidth where (i) the maximum 

distance among V, VVCL and VAJL is minimum, (ii) provided that there the highest of V, 

VVCL and VAJL is not lower then the lowest among the global maxima that the three 
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indexes assume over the whole set of bandwidths ranging from zero to the maximum 

income spread. 

Figures 4 and 4bis ABOUT HERE 

If we consider the three distances ( )VCL EG SW W
y T yV V R G G−− = − − , AJL EGV V R− =  and 

( )VCL AJL SW W
y T yV V G G−− = − , looking at Figures 4 and 4bis, the minimum for the 

maximum of the distances is reached when ( )EG SW W
y T yR G G−= − , at a 300 euro 

bandwidth for individuals and at a 380 euro bandwidth for family equivalent incomes. 

The behavior shown by EGR  in our empirical analysis is confirmed also by LU analysis: 

when bandwidths become large group average re-rankings annihilates, soon or later, 

depending on tax fairness: for individuals EGR   becomes zero sooner then for families. 

If we go back to expression (5) we can understand that ( )SW W
y T yG G− −  is totally negligible 

for small bandwidths, where ( )2 2
in n  results to be quite small and their sum is much 

less than 1 when bandwidths are tiny and then little crowded. As bandwidths increase, a 

more than proportional increase in ( )2 2
in n  is not compensated by a convergence of the 

it  towards  their average t  and the difference between SW
y TG −  and W

yG  increases more 

than proportionally. Surely ( )SW W
y T yG G− −  is expected to decrease and to tend to zero as 

bandwidths enlarge, being lim limSW W
y T y yb MAX b MAX

G G G−→ →
= = , but, as already observed, when 

their difference reaches zero, V, VVCL and VAJL become much lower than RE, that is 

much lower than the global maximum of VAJL. 

Looking at individuals, for 280-300 euro bandwidths EG SW W
y T yR G G−= −  is 0.005% of 

RE, which means the 1.5% of the maximum value attained by EGR  (bandwidth 10 euro 
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large) and the 1% of the value attained by ( )SW W
y T yG G− −  at 3000 euro bandwidth; this 

explains why at a 280 euro bandwidth the three potential vertical redistribution indexes 

look to be equal. Bit larger percentages hold for family equivalent incomes 19: in Figure 

1bis the distance between VAJL and V=VVCL appears to be a little greater than that 

observed for individuals, even if, in any case, quite limited.  

Looking at Figures we can notice that the maximum for VAJL, the lowest among the 

three indexes, lies quite close to the point where VVCL crosses V, so we can confirm that 

according the suggested criteria, the bandwidth where EGR  crosses SW W
y T yG G− −  can be 

identified as optimal. Observe that AJL VCLV V≤  holds together with, AJLV V≤ , VVCL 

crosses V when the former is still increasing and the latter already decreasing, the global 

maximum for VAJL should fall, as it actually falls, between the bandwidth where the 

separation between VVCL and VAJL becomes evident, and the bandwidth where VVCL and 

V become no more distinguishible. 

We add that in our empirical analysis, in the interval between 250-370 euro, VAJL 

oscillates from 99.97% and 99.99% of the Reynolds-Smolensky index, for individual; 

for families the percentage ranges from  99.97% to 99.98% when the interval is 340-440 

euro: in a neighbourhood of the optimal bandwidth the three indexes absorb most of the 

total redistributive effect. We conclude observing that at the optimal bandwidth the 

horizontal loss measured by HVCL and HAJL is much lower than the loss due to 

overlapping among groups, measured by RAJL. 

                                                 
19 EGR and ( )SW W

y T yG G− −  represent the 0.012% of RE at the 400 euro bandwidth; which means the 2.3% of the maximum value 

attained by EGR  (bandwidth 10 euro large) and the 2.1% of the maximum attained by ( )SW W
y T yG G− − (bandwidth 3000 euro large). 
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6. Conclusions 
 
The original Aronson, Johnson and Lambert (1994) decomposition of the redistributive 

effect considers groups of exact equals in portioning the whole pre-tax income 

distribution and restrict the analysis to the special cases in which the group averages and 

the within group orderings maintain the same ranking as before taxation. This means 

that the AJL decomposition of the redistributive effect considers only overlapping effect 

among groups of exact equals. 

As the following literature pointed out, exact equals are rare in the real world data, so 

that only groups with close pre-tax incomes can be considered. If this is the case, also 

the reranking of the mean post-tax income among groups and the reranking within 

groups must be considered. The intensity of the three possible rerankings here 

considered varies according to the bandwidth defining the close equals. Then a problem 

arises: an optimal bandwidth must be chosen in order to properly decompose the 

redistributive effect into vertical, horizontal and reranking effect. 

The choice of the optimal bandwidth is not obvious. Van de Ven, Creedy and Lambert 

(2001) individuate the optimal bandwidth that should be used in decomposing the 

redistributive effect as the Aronson, Johnson and Lambert (1994) methodology suggests 

without considering the different contribution of the reranking of the mean post-tax 

income among groups and the reranking within groups. They suggest choosing as the 

optimal bandwidth the one which maximizes the ratio between the potential vertical 

effect and the actual redistributive effect. As the empirical analysis shows, this ratio 

may have more than one relative maximum and presents a layout which may be 

irregular, so that this condition is difficult to be applied in real data elaborations. 
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Lambert and Urban (2005) got though this problem by identifying a set of possible 

decompositions of the redistributive effect. They also notice that when close pre-tax 

equals groups instead of exact pre-tax ones are considered, the residual component in 

the original Aronson, Johnson and Lambert (1994) model is not the Atkinson-Plotnick-

Kakwani index, but only one of its components, that is the one which measures group 

overlapping introduced by taxation. 

In this paper we use this decomposition of the Atkinson-Plotnick-Kakwani index, and 

intensively look to the empirical analysis in order to individuate the relationships among 

the main three possible decompositions of the redistributive effect analyzed by Lambert 

and Urban (2005). We suggest that the optimal bandwidth should be chosen where the 

maximum distance among the considered possible definitions of potential vertical effect 

is minimum, provided that the greatest of the three indexes is not lower than the global 

maximum assumed by the lowest of the three indexes over the whole income 

distribution range: the optimal bandwidth can be individuated at the point where the 

between group reranking index crosses the difference between the within group Gini 

indexes calculated, respectively, for the post-tax smoothed income parade and the pre-

tax one. We find empirical evidence that in this bandwidth neighborhood the three 

measures are also nearly converging and, moreover, absorb most of the Reynolds-

Smolenky total redistribution measure.  
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Table 1 Summary of index definitions  

Groups are constituted by subjects belonging to a same pre-tax income bracket; income brackets are 
created by splitting the pre-tax non decreasing incomes parade into contiguous intervals 
characterized by a same income spread. Groups contains the same subjects both before and 
after taxation, whatever ordering criterion is adopted. Before taxation no overlapping exists 
by construction; taxation may result in group overlapping.  

yG  Gini index for pre-tax income parade.  

B
yG  between groups Gini index for pre-tax income parade: it is defined as the Gini index when 

all incomes inside each group are substituted by the group income average.  

W
yG  within groups Gini index for pre-tax income parade:  , ,

W
y k y k y

k

G a G=∑ , where ,k yG  is the 

Gini index for the k-th group and ,k ya  is the product of the k-th group  population share and 
pre-tax income share. 

y TG −  Gini index for post-tax income parade. 

B
y TG −  it is analog to B

yG  for the post-tax income parade. 

W
y TG −  within groups Gini index for post-tax income parade:  , ,

W
y T k y T k y T

k

G a G− − −=∑ , where 

,k y TG −  is the post-tax Gini index for the k-th group and ,k y Ta −  is the product of the k-th 
group population share and post-tax income share. 

y TD −  concentration index for post-tax income parade when ordered according to the pre-tax order. 

B
y TD −  between groups concentration index for post-tax income parade: it is defined as the 

concentration index when all incomes inside each group are substituted by the group income 
average, moreover groups are ordered according to pre-tax group averages. 

W
y TD −  within groups concentration index for post-tax income parade:  

, ,
W
y T k y T k y T

k

D a D− − −=∑ ; ,k y TD −  is the concentration index for the k-th group, when the k-th 

group incomes are ordered according to the pretax within group order, and ,k y Ta −  is the 
product of the k-th group population share and post-tax income share. 

SW
y TG −  within groups Gini index for post-tax smoothed income parade. Smoothed taxation consists 

in taxing all income in a group by the group average tax rate.  , ,
SW
y T k y T k y T

k

G a G− − −=∑ , as 

the Gini index for the k-th group remains unchanged, when all group incomes are taxed by a 
same tax rate. 

 



Table 2 Summary of equations and components 
VCL VCL AJLRE V H R= − −  

VCL B B
y y TV G G −= −  

VCL W W
y T yH G G−= −  

AJL t B W
y T y T y T y TR G G G G− − − −= = − −  

0 0 0
lim lim 0 e lim 0VCL VCL AJL

b b b
V RE H R

→ → →
= = =  

lim 0 lim e lim 0VCL VCL AJL

b MAX b MAX b MAX
V H RE R

→ → →
= = − =  

AJL AJL AJLRE V H R= − −  

( )

AJL B SW
y y T y T

VCL SW W
y T y

V G G G

V G G
− −

−

= − − =

= − −
 

AJL W SW
y T y TH G G− −= −  

0 0 0
lim lim 0 e lim 0AJL AJL AJL

b b b
V RE H R

→ → →
= = =  

lim 0 lim e lim 0AJL AJL AJL

b MAX b MAX b MAX
V H RE R

→ → →
= = − =  

APKRE V H R= − −            

( )
( ) ( )

B SW
y y T y T

AJL B B
y T y T

VCL SW W B B
y T y y T y T

V G D G

V G D

V G G G D

− −

− −

− − −

= − − =

= + − =

= − − + −

 

W SW
y T y TH D G− −= −  

0 0
lim e lim 0y y Tb b

V G D H−→ →
= − =  

lim 0 e lim y T yb MAX b MAX
V H D G−→ →
= = −  

( )
( )

APK AJL EG WG

EG B B
y T y T

WG W W
y T y T

R R R R

R G D

R G D
− −

− −

= + +

= −

= −

  

0 0 0
lim 0 lim e lim 0AJL EG APK WG

b b b
R R R R

→ → →
= = =  

lim 0 lim 0 e limAJL EG WG APK
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Figure 1:  V, VVCLand VAJL (%RE) - Individuals 
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Figure 1:  V, VVCLand VAJL (%RE) – Individuals (focus) 
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Figure 1 bis: V, VVCLand VAJL (%RE) – m(1) Households  
m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1 
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Figure 1 bis: V, VVCLand VAJL (%RE) – m(1) Households (focus) 
m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1 
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Figure 2: H, HVCLand HAJL with RAJL and RAPK (%RE) - Individuals  
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Figure 2 bis: H, HVCLand HAJL with RAJL and RAPK (%RE) - m(1) Households 
§ m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1. 
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Figure 3: RAPK % decomposition - Individuals 
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Figure 3 bis: RAPK % decomposition – m(1) Households 
§ m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1. 
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Table 3: RE decomposition – Individuals 
(bootstrap estimated standard errors in parentheses-2,000 replications) 

 

 

Component Bandwidths 
 100 300 400 500 600 700 2000 

% RE/Gy 
14.3699 14.3699 14.3699 14.3699 14.3699 14.3699 14.3699 
(0.1266) (0.1266) (0.1266) (0.1266) (0.1266) (0.1266) (0.1266) 

% ( )VCLV RE  101.0357 101.0835 101.0858 101.0890 101.0878 101.0855 101.0039 
(0.0381) (0.0388) (0.0390) (0.0392) (0.0397) (0.0392) (0.0380) 

% ( )V RE  101.0847 101.0806 101.0762 101.0723 101.0634 101.0537 100.7546 
(0.0395) (0.0387) (0.0392) (0.0392) (0.0398) (0.0390) (0.0375) 

% ( )VCLH RE  0.0759 0.2057 0.2621 0.3157 0.3628 0.4065 0.6713 
(0.0025) (0.0064) (0.0083) (0.0098) (0.0115) (0.0126) (0.0232) 

% ( )H RE  0.0022 0.0063 0.0107 0.0146 0.0235 0.0332 0.3323 
(0.0012) (0.0031) (0.0042) (0.0052) (0.0061) (0.0070) (0.0222) 

% ( )AJLR RE  0.9598 0.8778 0.8237 0.7733 0.7250 0.6789 0.3325 
(0.0349) (0.0334) (0.0316) (0.0307) (0.0283) (0.0270) (0.0170) 

% ( )APKR RE  1.0871 1.0871 1.0871 1.0871 1.0871 1.0871 1.0871 
(0.0391) (0.0391) (0.0391) (0.0391) (0.0391) (0.0391) (0.0391) 

% ( )AJL APKR R  88.2865 80.7452 75.7697 71.1290 66.6890 62.4498 30.5890 
(0.5885) (0.4274) (0.4252) (0.4923) (0.5651) (0.5982) (0.8749) 

% ( )EG APKR R  4.5962 0.2900 0.1338 0.1116 0.0669 0.0669 0.0000 
(0.6003) (0.3100) (0.1310) (0.1115) (0.0549) (0.0495) (0.0146) 

% ( )WG APKR R  7.1174 18.9648 24.0964 28.7595 33.2441 37.4833 69.4110 
(0.1467) (0.3454) (0.4105) (0.5073) (0.5693) (0.6197) (0.9081) 

Source: Own elaborations.       

Table 4: RE decomposition – Households 
(bootstrap estimated standard errors in parentheses-2,000 replications) 

 

 

Component Bandwidths 
  100 300 400 500 600 700 2000 

% RE/Gy 
13.9266 13.9266 13.9266 13.9266 13.9266 13.9266 13.9266 
(0.1910) (0.1910) (0.1910) (0.1910) (0.1910) (0.1910) (0.1910) 

% ( )VCLV RE  101.2702 101.3349 101.3201 101.3300 101.3330 101.3351 101.2527 
(0.0543) (0.0574) (0.0577) (0.0574) (0.0575) (0.0565) (0.0565) 

% ( )V RE  101.3468 101.3412 101.3217 101.3193 101.3129 101.3079 100.9817 
(0.0606) (0.0577) (0.0574) (0.0585) (0.0592) (0.0592) (0.0574) 

% ( )VCLH RE  0.1001 0.2718 0.3422 0.4078 0.4664 0.5245 0.8316 
(0.0040) (0.0106) (0.0136) (0.0158) (0.0188) (0.0202) (0.0335) 

% ( )H RE  0.0016 0.0072 0.0266 0.0290 0.0354 0.0405 0.3667 
(0.0017) (0.0044) (0.0061) (0.0074) (0.0091) (0.0101) (0.0313) 

% ( )AJLR RE  1.1701 1.0622 0.9780 0.9217 0.8666 0.8106 0.4210 
(0.0504) (0.0486) (0.0453) (0.0433) (0.0420) (0.0394) (0.0246) 

% ( )APKR RE  1.3486 1.3486 1.3486 1.3486 1.3486 1.3486 1.3486 
(0.0605) (0.0605) (0.0605) (0.0605) (0.0605) (0.0605) (0.0605) 

% ( )AJL APKR R  86.7615 78.7591 72.5153 68.3462 64.2561 60.1067 31.2191 
(0.7555) (0.5072) (0.5598) (0.6584) (0.6792) (0.7271) (1.0030) 

% ( )EG APKR R  5.7103 1.0275 0.9484 0.5928 0.4347 0.4742 0.0395 
(0.8019) (0.3685) (0.3194) (0.2602) (0.1983) (0.2152) (0.0384) 

% ( )WG APKR R  7.5282 20.2134 26.5363 31.0611 35.3092 39.4191 68.7414 
(0.1758) (0.4143) (0.5429) (0.6269) (0.6628) (0.7425) (0.9690) 

Source: Own elaborations.       



Figure 4: REG and SW W
y T yG G− −  in percentage of RE – Individuals 
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Figure 4 bis: REG and SW W
y T yG G− −  in percentage of RE – m(1) Households 

§ m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1. 
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