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Abstract:

It is generally accepted that economy belongs to complex systems and both
deterministic and stochastic descriptions are needed to define main features of its
dynamics. This awareness and consequently the requirement of more realistic models
have lead to powerful new concepts and tools to deal with apparently random
phenomena that at deeper level could be complex and/or chaotic. Despite the difficult
to manage chaotic systems many researchers have been pushed to find a control
methods and tools of these systems. The control of nonlinear systems can actually be
easier than the control of linear ones, because it might take only a small push to
engender a big change in the system. In fact, controlled chaotic systems offer an
advantage in flexibility: any one of a number of different orbits can be stabilized by the
small control and the choice can be switched from one periodic orbit to an other by
very small correction of its parameters, without drastically altering the systems
configuration or interfering with their inherent properties. Therefore this richness of
possible behaviours in chaotic systems may be exploited to enhance the performance
of a dynamical system in a manner that would not be possible to have if the system’s
evolution is not chaotic. In this paper after a brief survey about the meaning and
methods of chaos control we will indicate a new tools used to detect and control a
chaotic behaviour and their application in economics.

Keywords : Non linear systems, Chaos Control, Floquet Theory, Recurrence Analysis

Introduction
In the last decades there has been an increasing interest in non-linear dynamic models, in

all scientific fields (mathematics, chemistry, physics and son on). The discovery that simple
nonlinear models can show complex and chaotic dynamics has pushed also some economists to
be interested in this field 1. In fact in literature there are a lot of examples of nonlinear economic
models that exhibit chaotic dynamics2. So, it is generally accepted that economy belongs to
complex systems and both deterministic and stochastic descriptions are needed to define main
features of its dynamics3. It is, therefore, not surprising that this awareness and consequently
the requirement of more realistic models have lead to powerful new concepts and tools to
detect, analyze and control apparently random phenomena that at deeper level could be
complex economic dynamics4.

In the literature there is no standard definition5 of chaos. In fact it is possible to define it
outlining its typical features that are:

Nonlinearity. If the phenomenon is linear, it cannot be chaotic.

                                                
1 “Interest in nonlinear dynamics models in economics is not new, however, and dates back to the time before
economists had learned about chaos. Kaldor (1940), Hicks (1950), and Goodwin (1951) have already tried to model
economic fluctuations by nonlinear deterministic business cycle models. At that time, attention was focused on
regular periodic dynamic behaviour rather than an irregularity and chaos” C. Hommes (1995).
2 Some works about the application of complex approach are the following. Of course, this list to is not exhaustive
but considers the main topics ranging from theories of choice, business cycle, time series analysis to growth theories,
redistributive taxation, policy implication and so on: Alchian A., (1950), J. Benhabib, R. H. Day (1981,1982), R. H.
Day (1982, 1983),J. M: Grandmont P81985), M. Boldrin, L. Montrucchio (1986), G. Gabisch, H.-W. Lorenz (1987);
W.A Brock., W.D. Dechert, J. Scheinkman (1987), J. Scheinkman (1990), W.A. Brock, D.A. Hsieh, B. LeBaron
(1991), D.A Hsieh. (1991), A. Medio (1992), Pesaran M. N., Potter M. (1992), J. Bullard, A. Butler (1993), A.
Serletis (1993), M. Laaksonen (1994), C. J., Granger (1994), B. Lebaron (1994), K. Nishimura, M. Yano (1995), W.
A Brock, Pedro J.F. de Lima (1996), S. N. Durlauf (1997), W.B Arthur., S.N. Durlauf and D.A. Lane (Eds), (1997),
Barnett, S. N. Durlauf (1999), M. Scheicher (1999), W Barnett (2000), O. Moritz, (2000). Moreover for survey on
chaos and economics see Baumol-Benhabib (1985), Brock et alt. (1992), Boldrin-Woodford (1990), Medio (1992),
Lorenz (1993)
3 J. A. Holyst, K. Urbanowicx 2000
4 “[...] term ‘complex economics dynamics’ to designate deterministic economic models whose trajectories exhibit
irregular (nonperiodic) fluctuations or endogenous phase switching. The first properties includes chaotic trajectories
[...]the second [...] change in the systems states [...] according to intrinsic rules” R. H. Day (1992)
5 W. Ditto, Munakata T., (1995)
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Determinism. A chaotic phenomenon has deterministic rather than probabilistic
underlying rules every future state of the system must follow.

Sensitivity to initial conditions. Small changes in its initial state can lead to radically
different behaviours in its final state. This property implies that two trajectories emerging from
two different close position in the course of time separate exponentially. This critical
dependence on the initial conditions, and the fact that experimental initial conditions are never
known perfectly, make these systems intrinsically unpredictable.

Sustained irregularity . Hidden order including a large or infinite number of unstable
periodic patterns characterises a chaotic phenomenon. This hidden order forms the
infrastructures of systems: a chaotic attractor. The dynamics in the chaotic attractor is ergodic,
which implies that during its temporal evolution the system ergodically visits small
neighbourhood of every point in each one of the unstable periodic orbits embedded within the
chaotic attractor.

Long-term prediction but not control is mostly impossible due to sensitivity to initial
conditions, which can be known only to a finite degree of precision.

Despite the difficult to managing a chaotic systems many researchers have been pushed
to find a control methods and tools of these systems.

The control of nonlinear systems can actually be easier than the control of linear ones,
because it might take only a small push to engender a big change in the system (sensitivity to
initial conditions ). In fact, controlled chaotic systems offer an advantage in flexibility: any one
of a number of different orbits can be stabilized by the small control and the choice can be
switched from one periodic orbit to an other by very small correction of its parameters, without
drastically altering the systems configuration or interfering with their inherent properties.
Therefore this richness of possible behaviours (infinite unstable orbits) in chaotic systems
may be exploited to enhance the performance of a dynamical system in a manner that would
not be possible to have if the system’s evolution is not chaotic.

This means, if we want to consider the economic application of chaos, that small, low-
cost policy changes could have a large impact on overall social welfare.

Therefore, also in economics the control of a time periodic system is a challenging task
due to the time varying nature of the coefficients and in particular the control of dynamical
systems from chaotic and unpredictable to periodic and predictable behaviour has become an
intense field of research in the last years, and therefore renewed interest in different control
methods has been stimulated.

In this paper after a brief survey about the meaning and methods of chaos control we will
indicate new tools to detect and to control a chaotic behaviour; suggests the meaning of chaos
control for economics policy. Finally we will propose an application.

Control of chaos
The term “controlling chaos” was coined by E. Ott, C. Grebogi and J. Yorke when they

published in Physical Review Letters in 1990 the paper “Controlling Chaos”. The key element
in this paper was the demonstration of the fact that a significant change in the behaviour of a
chaotic system can be made by a very small, tiny correction of its parameters and in particular,
this correction can be made without interfering with inherent properties of the system6. After
this paper the chaotic systems control has attracted increasing attention of researchers from
different field.

In general the methods7 for the control of chaos can be classified into two main classes:
1) closed loop or feedback methods which apply perturbations independent of the state of the
system; 2) open loop or non feedback methods  where perturbations are derived from state
information. The idea of this method is to change the behaviour of non linear systems by
applying a properly chosen input function.

                                                
6 FradkovA. L., EvansJ. R., Control of Chaos: Survey 1997-2000, 2002
7 An interesting and a deepening survey can be found in Fradkov A. L., Evans J. R., Control of Chaos: Survey 1997-
2000, 2002
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One can further distinguish between time-discrete and time-continuous methods, and
between methods in which perturbations are applied to parameters and to a dynamical variable,
respectively 8.

Closed loop or feedback methods
This class includes those methods which select the perturbation based upon a knowledge

of the state of the system, and oriented to control a prescribed dynamics. Besides OGY, among
them, we can consider the so called occasional proportional feedback (OPF) simultaneously
introduced by Hunt9 and Showalter10 , the method of Huebler11, and the method introduced by
Pyragas12, which apply a delayed feedback on one of the system variables. All these methods
are model independent, in the sense that the knowledge on the system necessary to select the
perturbation can be done by simply observing the system for a suitable learning time.

The OGY method is based on identifying a periodic orbit and applying small
perturbations to a system parameters to stabilize unstable steady states or unstable periodic
orbits. Although this perturbations is applied only when the system is close to the desired UPO
and when the only time series is available, using it for stabilization of general UPOs requires
precise information about the target UPO.

Therefore this method is inadequate for non stationary systems or the targeting problem.
This method requires, however, initially large parameter perturbations and is limited to the
stabilization of flip-saddle unstable periodic fixed points. Although the OGY-method is well
understood from the theoretical point of view its experimental implementations are seriously
limited by the fact that all quantities needed to calculate values of a system control parameter
are not directly given in an experimental data chain and to perform the control one needs to
apply a complex data analysis 13.

Some further extension of this method has lately been proposed and they are quite
popular in the fields of applied physics and nonlinear dynamics today.

In contrast to the OGY method the method of chaos control introduced by Pyragas can be
easily applied to experimental systems where the equations of motion are not know. The basic
idea of Pyragas’ method is to simply use a delayed state as feedback. The advantage of this
method is that it does not require full information about the target UPO; but rather, it only uses
a constant delayed time in the feedback controller14.

Open loop or non feedback methods
This class includes those strategies which consider the effect of external perturbations

(independent ofthe knowledge of the actual dynamical state) on the evolution of the system.
Periodic or stochastic perturbations have been seen to produce drastic changes in the dynamics
of chaotic systems, leading eventually to the stabilization of some periodic behaviours. These
approaches, however, are in general limited by the fact that their action is not goal oriented, i.e.
the final periodic state cannot be decided by the operator.

The crucial points of all these methods to perform a chaos control are: a) the
consideration that a chaos, while signifying sensitive dependence on small changes to the
current state and henceforth rendering unpredictable the system state in the long run, also
implies that the system's behaviour can be altered by using small perturbations; b) the
observation that a chaotic set, on which the trajectory of the chaotic process lives, has
embedded within it a large number of unstable periodic orbits (UPOs), so, unlike a linear
system in which a given parameter renders only one type of motion, many different time
evolutions are simultaneously possible; c) in addition, because of ergodicity, the trajectory
visits the neighbourhood of each one of these periodic orbits.

                                                
8 S. Boccaletti et al. 2000
9 E.R. Hunt, (1991)
10 V. Petrov, V. GaH spaH r, J. Masere, K. Showalter, (1993)
11 B.B. Plapp, A.W. Huebler, (1990)
12 K. Pyragas, (1992)
13 Janusz A. Ho lyst_, Krzysztof Urbanowicz, 2000
14 Y. Tian, C. Chen 2001
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To control a chaotic systems means stabilizing unstable periodic orbits15. The main idea
consisted in waiting for a natural passage of the chaotic orbit close to the desired periodic
behaviour and when a trajectory approaches ergodically this desired periodic orbit embedded in
the attractor, one applies small perturbations in order to stabilize such an orbit. This fact has
suggested the idea that the critical sensitivity of a chaotic system to changes (perturbations) in
its initial conditions may be, in fact, very desirable in practical experimental situations.

Economic Applications
Historically, economists have used linear equations to model economic phenomena,

because they are easy to manipulate and usually yield unique solutions. However, as the
mathematical and statistical tools available to economists have become more sophisticated, it
has become impossible to ignore the fact that many important and interesting phenomena are
not amenable to such treatment. Therefore controlling of at least some economical processes
seems to be one of the most important and challenging tasks facing the economists and
politicians responsible for economical policy.

Important phenomena for which linear models are not appropriate include ``depressions
and recessionary periods, stock market price bubbles and corresponding crashes, persistent
exchange rate movements . . . and the occurrence of regular and irregular business cycles'16'.
Therefore, economic theorists are turning to the study of non-linear dynamics and chaos theory
as possible tools to model these and other phenomena

In fact recently, there have been some applications of chaos control methods in economic
contexts considering that recognition and control of cyclical patterns and estimation of complex
dynamics may lead to many applications, for instance, business cycle detection, seasonal
changes in meteorology and population variations in ecology.

Examples of these application are: Holyst et al. (1996) applied the Ott-Grebogi-Yorke
method to a model of two competing firms; Kopel (1997) showed using a simple model of
evolutionary market dynamics how chaotic behaviour can be controlled by making small
changes in a parameter that is accessible to the decision makers and how firms can improve their
performance measures by use of the targeting method17. Xu et al. (2001) have introduced an
approach to detect UPOs pattern from chaotic time series from Kaldor business cycle model. Kaas
(1998) has proved that within a macroeconomic disequilibrium model that stationary and simple
adaptive policies are not capable of stabilizing efficient steady states and lead to periodic or
irregular fluctuations for large sets of policy parameters. The application of control methods
for chaotic dynamical systems shows that the government can, in principle, stabilize an
unstable Walrasian equilibrium in a short time by varying income tax rates or government
expenditures.

Tools to detect and stabilize UPO’s
The reason why the periodic orbits of a dynamical system are not easily detectable is

their instability: trajectories neighbouring an UPO are repelled from it. As periodic orbits open
a door to the understanding of the chaotic dynamics, many efforts have been made to develop
methods to detect these orbits despite their instability from both time series and knowledge of
the system under examination.

                                                
15 “The possibility of transformation of periodic motion into chaotic motion and viceversa was demonstrated by
Alexeev and Loskutov (1987)” see Alexander L., F., Radkov R. J.Evans 2002
16 Creedy, John and Vance L. Martin. Chaos and Non-Linear Models in Economics. Edward Elgar Publishing
Limited: Aldershot, 1994.
17 “The targeting procedure may be seen as a preliminary task for chaos control, because, as we have already pointed
out, the control algorithms (see, e.g. [1}3]) use linearization of the dynamics that are valid only in a rather small
neighborhood of the desired saddle point, and therefore need the system to target such a small neighborhood before
the switch on. The first targeting method was introduced by Shinbrot et al. (1990) who have suggested to use the
exponential sensitivity of a chaotic process to tiny perturbations in some accessible control parameter. S. Boccaletti
et al 2000
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Detecting UPO’s: Recurrence analysis
In economics there have been numerous works both theoretical and empirical concerning

the detection of complex and /or chaotic behaviours.
Many problems there have been in particularly for empirical works whose results have

tended to be inconclusive, due to lack of appropriate testing methods (Gilmore 1993). Taking
into account that standard techniques, such as spectral analysis or the autocorrelation function,
cannot distinguish whether a time series was generated by a deterministic or a stochastic
mechanism, also the complex tools are lacking to perform reliable outcomes. In fact, the
correlation dimension test, a metric approach18 developed by Grassberger and Procaccia (1983),
has been widely used in the natural sciences, and generally in conjunction with related
procedures such as the calculation of Lyapunov exponent, but its application to economic data
has been problematic 19. In fact the implementation of these algorithms is connected with
specific requirements as extensive amounts of data, which are not always available in the
experimental settings, and stationarity of data under investigation, and distributional behaviours
while many  time series variables are nonlinear or do not behave as Gaussians.

So, the application of metric approaches to relatively small, noisy data sets, which are
common in economics, is of dubious validity20. To avoid these difficulties in metric approach a
new method called topological approach21 to detecting deterministic chaos has been developed:
[Mindlin et al. (1990), Tufillaro et al. (1990), Mindlin et al. (1991)].

The topological method has several important advantages over the metric approach:
1. It is applicable to relatively small data sets, such as are typical in economics and

finance;
2. It is robust against noise;
3. Since the topological analysis maintains the time-ordering of the data, it is able to

provide additional information about the underlying system generating chaotic behaviour;
4. Falsificability is possible, as verification can be made of the reconstruction of the

strange attractor [Mindlin et al. (1991)].
Moreover the discovery of invariants by topological approach allows identifying models

to explain the data and the consequent topological classification of chaotic sets is a promising
step to develop predictive models in non-linear systems22

The Recurrence Analysis is an example of topological method and can represent a useful
methodology to detect non-stationarity23, chaotic behaviours and bifurcations in time series
(Zbilut, Webber, Giuliani, Trulla 2000; J. S. Iwanski 1998).

In the first time this approach has been used to show recurring patterns and non-
stationarity24 in time series (J. Cao, H. Cai 2000); then the Recurrence Analysis has been
applied to study of chaotic systems because recurring patterns are among the most important
features of chaotic systems (J. Cao, H. Cai 2000). This methodology by Recurrence Plot allows
revealing correlation in the data that is not possible to detect in the original time series. It not

                                                
18 The metric approach is characterized by the study of distances between points on a strange attractor. C. G.
Gilmore 1993
19 “Though in some cases it appears that dimensions can be reliably extracted with as few as 500 data points, the
minimum sufficient number of data points, and optimum data sampling rate and embedding delay, all depend
critically on the uniformity of the strange attractor and its dimension. [...] (Note that Smith (Smith 1988) has a proof
that the lower bound of the number of points to avoid spurios results is N = 42d”. Abrham N. B., Albano A. M.,
Tufillaro N. B. 1989
20 for the problem associated with metric approaches implementation see C. G. Gilmore 1993
21 This method includes a `close returns' test for detecting chaos which is of particular interest for researchers in
fields such as finance and economics, since it works well on relatively small, noisy data sets. Further, the topological
approach is potentially far more useful than metric methods since it is capable of promoting additional information
about the underlying system generating chaotic behavior, once evidence of chaos is detected. C. G. Gilmore 1993
22 N Tufillaro. 1994
23 “system properties that cannot be observed using other linear and non linear approaches and is specially useful for
analysis of non stationarity systems with high dimensional and /or noisy dynamics", see Holyst J. A. et alt. 2000 pp.
1
24 The recurrence periods obtained by RQA are only partially linked to the ones derived from FFT analysis. Whereas
the FFT is constrained by data stationarity and imposes a filter (sinusoid model) to the observed periodicities, RQA,
being based on the simple recurrence in time of very short patches of the studied signal, is independent from
stationarity assumptions and does not impose any “filter function” on the data
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requires any assumptions on the stationarity of time series, any assumptions regarding the
underlying equations of motions25 and distributional behaviours.

It is quite robust in the face of the noise and RP of dynamical system preserves the
invariant of the dynamics (Bradley and Mantilla 2001).

It seems especially useful for cases in which there is modest data availability and can be
compared to classical approaches for analysing chaotic data, especially in its ability to detect
bifurcation (J.P. Ekmann S. O. Kamphorst, D. Ruelle, 1987; L., Giuliani A., Zbilut J. P., Weber
C. L. Jr 2000, E. Kononov). Recurrence Analysis is particularly suitable to investigate the
economic time series that are characterised by noise, lack of data and being output of high
dimensional systems26.

The RPs approach is not gained much popularity because its graphical output is not easy
to interpret. As consequence Zbilut et alt. (1998) proposed statistical quantification of RPs,
well-know as Recurrence Quantification analysis (RQA). RQA defines measures for diagonal
segments in a recurrence plots. These measures are recurrence rate, determinism, averaged
length of diagonal structures, entropy and trend (Zbilut J.P 2000).

The RP is a two dimensional representation of single trajectory. It is formed by a 2-
dimensional M x M (matrix) where M is the number of embedding vectors Y(i) obtained from
the delay co-ordinates of the input signal. In the matrix the point value of coordinates (i,j), is
the Euclidean distances between vectors Y(i) and Y(j). In this matrix horizontal axis represents
the time index Y(i) while the vertical one represents the time shift Y(j). A point is placed in the
array (i,j) if Y(i) is sufficiently close to Y(j). the closeness between Y(i) and Y(j) is simply

expressed by dYY ji ≤− where d is a prescribed number.

There are two type of RP thresholded (also known as recurrence matrix) and
unthresholded27. The thresholded RPs are symmetric 28 around the main diagonal (45° axis).

The points in this array are coloured according to the ji − vectors distance. Usually the
dark colour shows the long distances and light colour short one. If the texture of the pattern
within such a block is homogeneous, stationarity can be assumed for the given signal within the
corresponding period of time; non-stationary systems causes changes in the distribution of
recurrence points in the plot which is visible by brightened areas

Recurrence Analysis is used also to detect unstable periodic orbits in chaotic time series.
From Bradley and Mantilla (2001) we could derive an example of application of RP to chaotic
time series analysis. This is indicated in the Fig.2 in the Appendix. Here, the repeated patterns
are building blocks in RP. These blocks reflect time intervals when the trajectory is travelling
on or near the corresponding UPO.

To find an UPO, we have to construct the RP of trajectory on a chaotic attractor, analyse
the repeated structures using also the quantification of RP, that is the RQA and use the
information extracted from Recurrence to index into trajectory and find the associated state
variable values.

Moreover the RP represents an useful way to compare two chaotic system; for example if
RP of two trajectory have different building blocks they can be not from the same system,
instead identical block RP structure identify identical dynamics. The recurrence analysis is an
useful tool for locating unstable periodic orbits in chaotic time-series data and bifurcation
behaviour 29 and for identifying a dynamical system30.

                                                
25 [...]Such an approach to dynamical system may be critically significant for analysing [...] system whose complex
mathematics are unknown, but whose state dependent fluctuations are essential for a complete systemic
characterization .Trulla 1996
26 Trulla L. et al. 1996 pp. 255, 1996
27 “[...] In an unthresholded PR the pixel lying at (i,j) is colored-coded according to the distance, while in a
thresholded RP the pixel lying at (i,j) is black if the distance falls within a specified threshold corridor and white
otherwise.” See Iwanski J. S. and Bradley E. 1988
28 The recurrence matrix is symmetric across its diagonal if ||Y(i)-Y(j)||=||Y(j)-Y( i)|| (McGuire et alt.1997)

29 [...] RQA can localize bifurcation behavior in this system without making any a priori assumptions regarding the
underlying equations of motion. Trulla et al. 1996
30 Bradley E., R. Mantilla 2001
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Stabilizing UPO’s: Floquet theory
The control of a time periodic system is a challenging task due to the time varying nature

of the coefficients. The main problem is that the time varying eigenvalues of the periodic
matrix do not determine the stability of the system and the standard methods of control theory
cannot be applied directly 31.

Therefore, one possible approach to handle such problems would be to construct
equivalent time invariant systems suitable for the application of conventional techniques. A
time invariant system can be obtained using the Lyapunov-Floquet (L-F) transformation. The
Floquet theory is at the core of what is now known as Floquet-Lyapunov Theory which
transforms the linear part of a periodic quasi linear equation into a time invariant form
preserving the original dynamic characteristic of the system.

While other methods 32 can be used for those systems where the periodic coefficients can
be expressed in terms of a small parameter the Lyapunov-Floquet transformation technique
does not have such limitations and hence it can be applied to general periodic systems33.

Stability of the system is determined by eigenvalues of transition matrix, so if the real
part of all Floquet exponents is negative the solution is stable, while the positive exponents
indicate instability.

The proposed techniques would provide useful tools in the simplification of linear and
nonlinear time-periodic systems. Since the analysis and control techniques for time-invariant
systems are well-developed, it would now be possible to use these methods for time-periodic
systems.

Nevertheless, this approach has been widely used for the assessment of stability of small
dimensional systems with periodic coefficients34. When the system is characterized by large
number of degrees of freedom a novel approach has been proposed, the implicit Floquet
analysis35, which evaluates the dominant eigenvalues of the transition matrix using the Arnoldi
algorithm, without the explicit computation of this matrix. This method is far more
computationally efficient than the classical approach and is ideally suited for systems involving
a large number of degrees of freedom.

Over the last thirty years, Floquet-Lyapunov theory has been mainly used for stability
analysis alone. Attempts to use it with a view to control a system are referred to few work 36.

The Floquet theory can be used to analyse a bifurcation behavior that provides a means
for studying dynamic mechanisms which may change structural stability of the system as some
parameter slowly varies with time.

The types of bifurcation are determined from the manner in which Floquet multipliers
leave the unit circle. There are three possibilities: (a) if the Floquet multiplier leaves the unit
circle through +1, we have either a transcritical, symmetry-breaking, or cyclic-fold bifurcation;
(b) if the Floquet multiplier leaves through -1, we have a period-doubling bifurcation (flip
bifurcation); and (c) if complex conjugate Floquet multipliers leave the unit circle from the
imaginary axis, we have a secondary Hopf bifurcation37.

Consider a system of linear, homogeneous differential equations with periodic
coefficients:

xtGx )(
.

=           (1)

where G(t), with t∈R is a real m x m matrix function. The vector x is a column vector of
dimension m. Let G(t) be periodic with minimum period of T.

Let )()........,(),( 21 txtxtx m be any set of m solutions to the system (1), linearly

independent for any independent t∈R. The matrix X(t) with columns )()........,(),( 21 txtxtx m

                                                
31 D. Boghiu  et al. 1998
32 The averaging method Anderson, G. L., and Tadjbakhsh, I. G, 1989
33 Sihna and Henrichs 1997
34 Gaonkar G.H., Peters D. A., 1987
35 Bauchau O.A., Nikishkov Y.G., 2000a and 2000b
36 R. A. Calico and W.E. Wiesel 1984, H.M. Al-Rahmani and G.F. Franklin 1989, H.M. Al-Rahmani and G.F.
Franklin 1990
37 David and Sihna 1999
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is called a fundamental matrix. If X(0) = I where I is the m x m identity matrix, X(t) is called a
principal fundamental matrix, the matrix given by F = X(T) is called the Floquet transition
matrix or the monodromy matrix. The computation of the Floquet transition matrix is related all
the states of the system at a given instant to the same states one period later. The size of this
transition matrix is equal to the total number of states of the system. So, the computation of the
transition matrix of a system with N states requires N integrations of the system response over
one period, for a set of N linearly independent initial conditions.

The eigenvalues of F are called the characteristic multipliers for the system (1). The
analysis of characteristic multipliers (eigenvalues of monodromy matrix) allows determining
the stability of the solutions of the system represented by (1).

The eigenvalues closest to the imaginary axis at either side play an important role, and
they are called the leading eigenvalues38.

In fact, if all the eigenvalues (characteristic multipliers) are situated inside the unit circle
in the complex plane, all the solutions turn to zero as +∞→t . If any of the characteristic
multipliers are outside the unit circle, unbounded solutions exist. If all multipliers are inside or
on the unit circle, the stability conditions are determined by the difference between the
algebraic and the geometric multiplicity of the multipliers situated on the unit circle 39.

Recurrence Analysis and Floquet theory.
After described Recurrence Analysis and Floquet theory and the particular application

they could have in economics, we propose an idea to combine the two tools in the field of time
series analysis.

Here we will start from consideration of a basic idea from Auerbach et al. 1987. The goal
of this work was: a) to extract all the periodic orbits from an experimental chaotic time series
and calculate their stabilities by Lyapunov exponent; b) This information can be used to
describe important properties of general chaotic sets. He considered a time series sufficiently
large outlining that the unstable periodic orbits can be extracted from chaotic signal for an
order n that depends on the amount of data available 40. After localizing the periodic orbits by
methods that look like recurrence plot41, to calculate the eigenvalues and eigenvector for each
point of a periodic cycle he used a Jacobian matrix.

The combining42 the Recurrence Analysis and Floquet Theory allows to overcome some
pitfall of that approach.

In fact, given a time series we could use Recurrence analysis to detect chaotic behaviour,
in particularly to localize unstable orbits and bifurcation. As highlighted above the detection of
periodic orbits in experimental data is a central issue in the field of chaotic control43. Moreover
unstable periodic orbits embedded in chaotic attractors are fundamental to an understanding of
chaotic dynamics.

The instability that characterises these orbits makes hard to find them. The tools 44 used to
recognize the UPOs in time series don’t work well45

                                                
38 Zheng Z., Lust K., Roose D., 2001
39 Seyranian A.P., et al. 2000
40 Auerbach et al.1986
41 [...] to locate the periodic orbits by scanning of the time series for pairs of points separated by n time steps that are

within a small preassigned spatial difference (
1

r ) of one another. Auerbach et al. 1987
42 We could apply the combination of these two tools also for studying bifurcation behavior and chaotic itinerancy;
these are typical behavior of systems with high freedom degree. For analysing the stability and what kind of
bifurcation occurs, we apply the Floquet theory, while for evaluating the weak instability that characterises the CI’s
attractors we could use the implicit Floquet theory.
43 So P., et al. 1996
44 [...] the method utilizes the linear dynamics around an unstable periodic point to produce a statistical measure
which is singular at periodic point. By construction, all points that lie within the linear regions of periodic orbits are
utilizes. There is no need to search for an optimal neighborhood size as in other recurrence methods. Using this
method, unstable fixed point were reliably identified in noisy numerically generated data. Do P. et alt. 1996
45 [...]one watches for close returns one plane of section, then bins and averages several occurrences in order to
reduce noise. This procedure is quite time consuming for two reason: it non involves an ensemble of nearest-
neighbor searches, but also relies on the ergodicity of the orbit in order to visit each UPOs. One can accelerate
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Using the RP we have extract the periodic orbits from time series data and now we have
to calculate the their stability. This an important step because UPO’s stability properties dictate
how the trajectories travel upon and around it. This question of stability can be resolved using
the Floquet theory. In fact calculating the eigenvalues and eigenvectors of monodromy matrix
we can know the stability of periodic orbit.

To calculate periodic orbit stability we could apply Floquet theory rather then Lyapunov
exponents, as Auerbach et alt (1987) did. This because the economic time series are very short
and the reliability of Lyapunov exponents is based on large amount of data. Furthermore, we
use the monodromy and not the Jacobian matrix to calculate the eigenvalues because for fixed-
point solutions, local stability of the system is determined from the eigenvalues of the Jacobian
matrix of the linearized system. On the other hand, for periodic solutions, stability of the
system depends on eigenvalues of the monodromy matrix, i.e., Floquet multipliers.

Moreover, in this context the suggested method of control could be the Pyragas method.
This because, while the OGY method is well understood from theoretical point of view its
practical implementation is limited by fact that all quantities needed to calculate values of
system control parameters are not directly given in experimental data, the Pyragas method46 can
be easily applied to experimental systems where the equations of motion are unknown47.

Conclusion
The controlling of at least some economical processes seems to be one of the most

important and challenging tasks facing the economists and politicians responsible for
economical policy.

In the traditional approach the economic modelling on which to base the advices of
policy, has been dominated by linearity assumption of dynamic economic systems. The main a
priori argument in favour of linearity and the reason for its original adoption is its simplicity48.
Nevertheless linear models have been proved to be fundamentally wrong or misleading,
skewing the understanding of the economy and sometimes corrupting the associated policy
advice49.

In this context chaos represents a radical change of perspective. This because it is not
only capable of explaining irregular dynamic behaviors, that characterize the economic
phenomena but also providing a useful tool for the stabilization of nonlinear dynamical
systems. In fact many nonlinear dynamical systems, even though they exhibit very irregular
behavior, are in fact stabilizable, quite in contrast to systems with irregularities depending
solely on stochastic shocks. As illustrated above chaotic systems display continuous
dependence on parameters and their control is based on small variations in these parameters
which lead to changes in the dynamic properties of the model. Some of these parameters
represent policy rules such as the rate of taxation, the rate of money growth or government
expenditure and are set by the policy authorities. Therefore, the authorities have considerable
control over the dynamic outcome.

So, exploiting the fundamental features of chaotic systems as the sensitivity to initial
conditions and the presence of unstable orbits the policy authorities can perform their outcome by
small interventions.

Therefore the policy authorities that want to perform a best outcome in term of increasing
employment, growth and welfare cannot use economic models based on the linearity and
simplicity assumption of traditional economic models. The interventions of policy instead must
be based on the considerations that economics is a complex system. Of course, this implies the
use of typical tools of complexity.

From this point of view the Recurrence Analysis and Floquet Theory represent useful tools
to analyze and control complex system. Moreover, in the time series analysis the suggested
methodology, (that is the combined use of these tools) allows to overcome application’s

                                                                                                                                    
matters somewhat by using estimates of the local dynamics, but the computational complexity is largely inescapable.
Bradley and Mantilla 2001
46 for deepening Pyragas method as chaos control see H. Nakajima 1997
47 Holyst and Urabanowicz 2000
48 Pesaran M. H., Potter S. M. (1992)
49 J. Bullard, A. Butler (1993)
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difficulties of traditional tools and also of some more known complex tools, as Lyapunov
exponent.

In fact for example, Recurrence analysis seems especially useful for cases in which there is
modest data availability and to detect unstable periodic orbits because preserves the invariant of
the dynamics. Floquet theory provides a means for studying dynamic mechanisms which may
change structural stability of the system as some parameter slowly varies with time. While
other methods can be used for those systems where the periodic coefficients can be expressed
in terms of a small parameter the Lyapunov-Floquet transformation technique does not have
such limitations and hence it can be applied to general periodic system.
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Appendix

(a) (b) (c)
Fig. 2: source Bradley Mansilla 2001. Unstable  periodic orbits embedded within the Lorenz attractor: a) full attractor, b) an unstable two cycle, c) five-

cycle
Rp (a) Rp (b) Rp (c)

Fig. 3. Recurrence plot of the x component of the trajectories of a, b, c constructed with a threshold corridor [0,2] and the Euclidean 2-norm
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