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Abstract

I apply optimal control theory to analyze a dynamic setting where a ver-
tically di¤erentiated monopolist, through capital accumulation over time, may
invest both in product quality and advertising campaigns. By comparing the
monopolist’s behavior to the social planner’s, I show that, at the steady state:
(i) the monopolist’s bi-dimensional R&D portfolio is always distorted, along,
at least, one dimension; (ii) the level of demand induced by the monopolist
exactly coincides with the one a benevolent social planner would choose. The
latter result is illustrated within a linear-quadratic technology.

Keywords: product quality, advertising, dynamic monopoly, vertical dif-
ferentiation, capital accumulation.

JEL Classi…cation: D3, L12, O31.

¤I am grateful to Luca Lambertini for his guidance throughout the paper’s evolution. Any
remaining errors, of course, are my own.
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1 Introduction
The existing literature on advertising dynamic models can essentially be partitioned
into two main subsets (see Sethi, 1977). The …rst, à la Nerlove and Arrow (1962),
considers advertising as an instrument to increase the stock of goodwill or reputation;
the second, à la Vidale and Wolfe (1957), is characterized by a direct relationship
between advertising expenditures and the rate of change in sales1 .

With regard to product quality provision, a dynamic set-up has prevalently been
adopted in relation with advertising expenditures aimed at the formation of goodwill
(see Kotowitz and Mathewson, 1979; Conrad, 1985; Ringbeck, 1985)2. A prominent
exception is represented by Lambertini (2001), who investigates a di¤erential duopoly
game where …rms supply goods of di¤erent quality, resulting from capital accumula-
tion over time. The set-up is borrowed from static monopolistic models with vertical
di¤erentiation (see Spence, 1975; Mussa and Rosen, 1978). The basic insight common
to these contributions is that a private monopolist designs the product to match the
preference of the marginal consumer, while a benevolent social planner cares about
the taste of the average one. Therefore, quality overprovision (underprovision) arises
whenever the marginal willingness to pay of the latter results lower (higher) than the
former’s. In another paper, Lambertini (1997) shows that under largely acceptable
hypothesis concerning the distribution of the population3 and a well behaving cost
function4, quality distortions do not arise, while prices and quantities are upwards
and downwards distorted, respectively. At a …rst glance, this result seems to be in
contrast with the conventional wisdom on quality provision by a vertically di¤erenti-
ated monopolist (Spence, 1975). Actually, what Spence argues is that for given and
equal output, compared to the social planning, the monopolist undersupplies product
quality5 (see Tirole, 1988). However, prices distortions are quite likely to happen
in monopoly, not to use the term always. Consequently, one could be tempted to
ask himself whether Spence’s arguments are wrong. As Tirole (1988) well explains,
when the monopoly structure is not questioned, reasoning for given quantities can be
appropriate. But if the purpose of the analysis is to compare the monopoly to the
social planning, such a reasoning is not acceptable, since it does not allow to take
into account the global dead weight loss. Therefore, as usual, all depends on what
one is interested in.

1For surveys, see JÁrgensen (1982), Feichtinger, Hartl and Sethi (1994) and Dockner, JÁrgensen,
Van Long and Sorger (2000, ch.11)

2For surveys on dynamic advertising, see Sethi (1977); JÁrgensen (1982); Feichtinger and
JÁrgensen (1983); Erickson (1991); Feichtinger, Hartl and Sethi (1994).

3An uniform density function is assumed.
4The total cost function is C (x; q); with Cx > 0; Cq > 0; Cxx ¸ 0; Cqq ¸ 0; x and q being

quantity and quality, respectively.
5A su¢cient condition for this to happen is that the marginal willingness to pay for quality

decreases with the quantity purchased, i.e., marginal and absolute willingness to pay for quality be
positively linked.
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I apply optimal control theory6 to analyze a dynamic setting where a vertically
di¤erentiated monopolist, through capital accumulation over time, may invest both
in product quality and advertising campaigns7. The …rst task of the analysis is to
compare the monopolist’s bi-dimensional R&D portfolio with the social optimum.
To this aim, I start by applying a very general model where functional speci…cations
are avoided. I solve both the monopolist and the social planner’s problem for the
implicit quality and advertising steady state levels, as well as for the related invest-
ments. Then, by comparing the implicit solutions, I conclude that the monopolist’s
bi-dimensional R&D portfolio is always distorted, along, at least, one dimension.

The reminder of this paper is structured as follows. The general model is laid out
in section 2. In section 3, I focus on product quality investments, while in section 4,
I focus on advertising campaigns. In section 5, aimed at obtaining explicit solutions,
I employ a linear-quadratic technology, showing that, when both investments are
jointly activated, a pro…t-maximizing monopolist provides the market with the …rst
best quantity level. In section 6, I evaluate the resulting monopolist’s equilibria
in terms of welfare, suggesting which should be the optimal policies to cope with
dynamic ine¢ciencies. Finally, in section 7, I provide concluding remarks.

2 The model
I consider a market for vertically di¤erentiated products where a monopolist subject
to no entry threat supplies a single variety q at price p in a number of units x and
a¤ects market preferences by means of advertising campaigns. Consumers are ordered
along a support S = µ1¡ µ0 on the basis of their quality appraisal, expressed by their
marginal willingness to pay, µ. Without any loss of generality, let S be unitary, with
µ1 > 1. The population is distributed according to the density f(µ): Suppose f(µ)
be uniform. Since µi is the marginal willingness to pay characterizing consumer i, his
gross surplus from the consumption of quality q is given by:

V (µi; q) = µiq (1)

Net surplus simply amounts to:

S(µi; q; p) = µiq ¡ p (2)

Each consumer is confronted with the choice between buying or not buying one unit
of a certain variety. These alternatives are equivalent if:

0 = µiq ¡ p) µk =
p
q

(3)

6See Chiang, 1992 or Seierstad and Sydsaeter, 1987. The former provides a good introduction
to optimal control theory, while the latter, at a less introductory level, is reached of economic
applications.

7The analysis of dynamic monopoly originates with Evans (1924) and Tintner (1937).
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Therefore, total demand writes:

x = µ1 ¡ µk = µ1 ¡ p
q

· 1 (4)

Production entails a variable cost, which is assumed to be convex in the quality level:

C q = xq2 (5)

and the setup of advertising campaigns entails a …xed cost:

C µ1 = B + °
2
(µSS1 ¡ µ1)2 (6)

with µSS1 > µ1 and B; ° > 0; where µSS1 denotes the exogenous advertising target, ° is
a parameter weighing the square of the distance between such a target and the actual
reservation price, and B is the amount of money to be spent in the case in which the
target is achieved.

Instantaneous pro…ts amount to:

¦ = (p ¡ q2)(µ1 ¡ p
q
) ¡B ¡ °

2
(µSS1 ¡ µ1)2 (7)

Instantaneous consumer surplus is:

CS =
µ1Z

µk

(µq ¡ p)dµ = 1
2
µ21q2 ¡ 2pµ1q + p2

q
(8)

Instantaneous social welfare is obtained adding up consumer surplus and pro…ts:

W = ¦+CS (9)

Now, let me introduce the time dimension into this setup. Suppose, …rst, that
the market exists over t 2 [0;1): To keep things manageable, I assume that both the
size and the distribution of the population remain constant over t. Accordingly, the
demand function can be written:

x(t) = µ1(t) ¡ p(t)
q(t)

· 1 (10)

In the remainder, I will consider the three following scenarios: (i) investments in
product quality; (ii) investments in advertising campaigns; (iii) both jointly.

In (i), while µ1(t) remains constant at bµ1; in response of capital accumulation over
time, q(t) evolves according to the following kinematic:

@q(t)
@t

= bÁ(k(t))¡ ±q(t) (11)
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In (ii), while q(t) remains constant at bq, in response of capital accumulation over
time, µ1(t) evolves according to the following kinematic:

@µ1(t)
@t

= cÃ(l(t))¡ ±µ1(t) (12)

where k(t) and l(t) denote the speci…c capital to be devoted to product quality im-
provements and advertising campaigns, respectively; Á(k) and Ã(l) are di¤erentiable

and invertible functions de…ned in the set of real numbers, with
@Á(k)
@k

> 0;
@Ã(l)
@l
> 0;

@Á2(k)
@2k

· 0; @Ã
2(l)
@2l

· 0: ± 2 [0; 1] is the usual depreciation rate, supposed to be com-
mon to both dynamics for the sake of simplicity. Finally, b and c are positive real
constants.

Let r > 0 be the price for k(t) and w > 0 be the price for l(t). Therefore,
instantaneous investments costs in quality improvements and advertising campaigns
are, respectively:

IC q(t) = rh(k(t)) (13)

ICµ1(t) = wz(l(t)) (14)

with
@h(k(t))
@k(t)

> 0;
@2h(k(t))
@k(t)2

¸ 0;
@z(l(t))
@l(t)

> 0;
@2z(l(t))
@l(t)2

¸ 0:

3 Product Quality

3.1 The Social Planner’s equilibrium
The current value Hamiltonian for the social planner’s problem (P ) turns out to be:

H = e¡½t

8
<
:

1
2
( bµ1)2q2 ¡ 2pbµ1q + p2

q
+ (p¡ q2)(bµ1 ¡ p

q)+

¡rh(k(t)) + ¸1(t)(bÁ(k(t))¡ ±q(t))

9
=
; (15)

where ¸1(t) = ¹1(t)e½t , ¹1(t)being the co-state variable associated to q(t): The
feasible set is zP = fbµ1 ¸ q; p ¸ 0; q ¸ 0;

p
q

¸ µ0g: To simplify notations, I neglect

the index of time. By applying Pontryagin’s maximum principle, necessary conditions
for a path to be optimal are8 :

Hp = 0 ! p = q2 (16)

Hk = 0 !
r
@h(k)
@k
¸1b

=
@Á(k)
@k

! ¸1 =
r
@h(k)
@k

b
@Á(k)
@k

(17)

8For a revision of the methodology have a look at Chiang’s book (1992).
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Hq = ¡1
2

¡( bµ1)2q2 ¡ p2+ 4q3 bµ1 ¡ 2q2p
q2

¡ ¸1± = ½¸1¡
¢
¸1 (18)

along with the transversality condition:

lim
t!1
¹1q = 0 (19)

I apply Mangasarian’s theorem to check whether these conditions are also su¢cient:

de…ne V P =
(bµ1)2q2 ¡ p2 ¡ 2q3 bµ1 + 2q2p

2q
¡ rh(k); v1 = bÁ(k(t)) ¡ ±q(t): I compute:

@2V P

@2q
= ¡2µ1 ¡ p

2

q3
< 0 always;

@2V P

@2p
= ¡1
q
< 0 always. Then I compute:

@2v1
@2q

= 0;

@2v1
@2k

= b
@2Á(k)
@2k

· 0, as long as b > 0 and
@2Á(k)
@2k

· 0, which is always true by
assumption. It remains to check that, in the optimal solution, the co-state variable be

non negative: ¸1 =
r@h(k)
@k

b@Á(k)
@k

¸ 0 by assumption. Therefore, the necessary conditions

of the maximum principle are also su¢cient.
By di¤erentiating (17) w.r.t. time:

¢
¸1=

r
¢
k [
@2h
@2k
@Á
@k

¡ @h
@k
@2Á
@2k

]

b[
@Á
@k

]2
(20)

By inserting (20), (16) and (17) into (18) and by solving for
¢
k:

¢
k=

0
B@¡(bµ1)2

2
+ 2q bµ1 ¡ 3

2
q2 +

r
@h(k)
@k

b
@Á(k)
@k

(± + ½)

1
CA

b(
@Á
@k )

2

r
µ
@2h
@2k
@Á
@k

¡ @h
@k
@2Á
@2k

¶ (21)

with
@2h(k)
@2k

@Á(k)
@k

6= @h(k)
@k
@2Á(k)
@2k

, i.e., the ratio between second derivatives has to

be di¤erent from the corresponding ratio between …rst derivatives. Since
@2h
@2k
@Á
@k
>

@h
@k
@2Á
@2k

:

sign(
¢
k) = sign(

(4qµ1 ¡ µ21 ¡ 3q2)
2

+
r(± + ½)
b

­(k))

Therefore, with q < 1
3µ1 (see …gure 1) if q increases k does likewise9.

9 If q > 2
3µ1 the opposite holds. However, since the locus

¢q= 0 is represented by a function which
is monotonically decreasing, q > 1

3 µ1 can not be an equilibrium.
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The steady state conditions
¢
k= 0;

¢q= 0 imply:

¢
k= 0 ! @Á(k)

@k
= 2r

@h(k)
@k

± + ½

b
³
¡4bµ1q +3q2+ ( bµ1)2

´ (22)

¢q= 0 ! q =
bÁ(k)
±

(23)

By solving (22) for q I …nd the following roots:

q1;2 =
2
3

bµ1 § 1
3b

q
b2(bµ1)2 +6r(± + ½)¢(k) (24)

where¢(k) =

@h(k)
@k
@Á(k)
@k

, with¢(k)0 = h
00Á0 ¡ h0Á00
(Á0)2

> 0 since h00 > 0; Á0 > 0; h0 > 0; Á00 ·

0 by assumption. Since q01;2 = §(¡ 1
3b

1
2 (µ

2b2 + 12br(± + ½)¢)¡1=212br(± + ½)¢0) ? 0;

the root q1 = 2
3
bµ1 + 1

3b

q
b2(bµ1) + 6r(± + ½)¢(k) is not admissible, being q1 > bµ1 for

any k > 010. What about concavity? It is easy to verify that q002 > 0 if ¢00 < 0: A
su¢cient condition for ¢00 < 0 to hold follows:

Á0

2Á00
h000Á0 ¡ h0Á000
h00Á0 ¡ h0Á00 > 1

Notice that when h000 and Á000 are nil the condition does not hold but this does not
imply that q 00 < 0. The necessary condition for q 00 > 0 turns out to be:

¢00

¢0 <
6br(± + ½)¢0

µ2b+ 12r(± + ½)¢

Let me assume that the above disequality holds along the entire admissible range of
k, implying that q 002 > 0: Anyway, the qualitative analysis of the equilibrium is not
a¤ected by the concavity of the locus

¢q= 0, even in the case in which the sign of the
secon derivative changes within the admissible range of k.

I am interested in investigating the dynamics of the system in the positive quad-
rant of the space fk; qg, which is described in …gure 1 (see the Appendix). The locus
¢
k= 0 corresponds to the decreasing curve which intersects the vertical axe at q =

bµ1
3 .

The economic interpretation of such a locus is easy. When q is high, the planner
is willing to stop the accumulation process quickly, at a low level of k. Viceversa,
when q is low, he has incentives to keep on accumulating until the optimal level of
q is reached. Moving from the origin, the locus

¢q= 0 draws a curve which with no
10q belongs to the feasible set as long as it is not greater than µ1.
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doubt intersects the locus
¢
k= 0 once. The planner’s equilibrium is denoted with a

P: Clearly, it is a saddle and it can be approached only along the north-west arm
of the path. As usual, the initial conditions play a crucial role in determining the
trajectory of both variables over time. By following the directions indicated by the

arrows, if q(0) <
bµ1
3

the steady state can never be achieved. Similarly, if q(0) >>
bµ1
3

,

the descending trajectory crosses the locus
¢q= 0 at the right of P and then becomes

increasing.
With regard to the formal stability analysis, let me focus on the following inter-

esting case: ¢(k) = Á(k) = k. This, among others, is the case of a linear quadratic
technology. The resulting dynamic system described by (11) and (21) can be written
in matrix form as follows:

" ¢q
¢
k

#
=

" ¡± b
b
r
(2µ1 ¡ 3

2
q) ± + ½

# ·
q
k

¸
+

"
0

¡ b
2r
µ21

#

Since the determinant of the above 2 £ 2 matrix is always negative in the relevant
parameter range, the equilibrium is stable along a saddle path.

3.2 The Monopolist’s equilibrium
The current value Hamiltonian for the monopolist’s problem (M) turns out to be:

H = e¡½t
½
(µ1 ¡ p(t)q(t) )(p(t) ¡ q(t)2) ¡ rh(k(t)) + ¸1(t)(bÁ(k(t)) ¡ ±q(t))

¾
(25)

where ¸1(t) = ¹1(t)e½t , ¹1(t) being the co-state variable associated to q(t). The
feasible set is zM = fq · bµ1; q ¸ p

bµ1
; p ¸ q2; p

q
¸ µ0g: To simplify notations, as

before, I neglect the index of time. By applying Pontryagin’s maximum principle,
necessary conditions for a path to be optimal are:

Hp = 0 ! p = q(
bµ1 + q)
2

! xM =
bµ1 ¡ q
2

(26)

Hk = 0 !
r
@h(k)
@k
¸1b

=
@Á(k)
@k

! ¸1 =
r
@h(k)
@k

b
@Á(k)
@k

(27)

Hq = ¡2q bµ1 +
p2

q2
+ p¡ ¸1± = ½¸1¡

¢
¸1 (28)

along with the transversality conditions:

lim
t!1
¹1q = 0 (29)
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I apply Mangasarian’s su¢ciency theorem: de…ne V M = (µ1 ¡ p
q
)(p ¡ q2) ¡ rh(k);

v1 = bÁ(k(t)) ¡ ±q(t): I compute:
@2V M

@2q
= ¡2

q3µ1 + p2

q3
< 0;

@2V M

@2p
= ¡2

q
< 0;

@2V
@2k

= ¡r@
2h(k)
@2k

· 0 as long as
@2h(k)
@2k

¸ 0, which is always true by assumption.
Therefore, the necessary conditions of the maximum principle are also su¢cient.

By di¤erentiating (27) w.r.t. time:

¢
¸1=

r
¢
k [
@2h
@2k
@Á
@k

¡ @h
@k
@2Á
@2k

]

b[
@Á
@k

]2
(30)

By inserting (26), (27) and (30) into (28) and by solving for
¢
k:

¢
k=

b(
@Á
@k

)2

r(
@2h
@2k
@Á
@k ¡ @h@k

@2Á
@2k )

8
><
>:
q bµ1 ¡ 1

4
( bµ1)2 ¡ 3

4
q2 +

r
@h
@k

b
@Á
@k

(± + ½)

9
>=
>;

(31)

with

sign(
¢
k) = sign(

(4qµ1 ¡ µ21 ¡ 3q2)
4

+
r(± + ½)
b

¢(k))

As before, with q < 1
3µ1 if q increases k does likewise.

The steady state conditions
¢
k= 0;

¢q= 0 imply:

¢
k= 0 ! @Á(k)

@k
= 4r@h(k)

@k
± + ½

b
³
¡4bµ1q +3q2+ ( bµ1)2

´ (32)

¢q= 0 ! q =
bÁ(k)
±

(33)

By solving (32) for q I …nd the following admissible root:

q =
2
3

bµ1 ¡ 1
3b

q
b2( bµ1)2 + 12r(± + ½)¢ (34)

The necessary condition for q 00 > 0 is:

¢00

¢0 <
6br(± + ½)¢0

µ2b+ 12r(± + ½)¢

Let me assume that this condition holds, hence q 00 > 0:
The phase diagram of the dynamic system referred to the monopolist’s problem is

very close to the one already seen for the planner’s, therefore omitted, as well as for
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the stability analysis. What is relevant to my purpose is to compare (34) with (24)
in order to understand who between the monopolist and the planner invests more
in product quality. (34) and (24) are two descending curves with common intercept,
but di¤erent slopes. It is straightforward to assess that the curve which is referred to
the monopolist’s problem is always less-sloped than the one referred to the planner’s.
Since the locus

¢q= 0 is common to both, it follows that the monopolist ends up with
undersupplying product quality. Figure 2 (see the Appendix) illustrates the previous
discussion.

Proposition 1 For any given bµ1, the monopolist underinvests in product quality com-
pared with the social optimum. If q(0) 2 ( bµ1=3; q0) with q0 su¢ciently low, the result-
ing equilibria are stable along a saddle path.

It is worth noting that, in order to have the monopolist producing the level of
product quality which is socially desirable, the monopolist should face a richer market
than the planner: the locus

¢
k= 0 referred to the his problem should shift upwards so

as to cross the locus
¢
k= 0 referred to the planner’s exactly at P .

4 Advertising Campaigns

4.1 The Social Planner’s equilibrium
The current value Hamiltonian for the social planner’s problem (P ) turns out to be:

H = e¡½t

8
><
>:

1
2
µ21bq2 ¡ 2pµ1bq + p2

bq + (p ¡ bq2)(µ1 ¡ pbq ) ¡B+
¡°
2
(µSS1 ¡ µ1)2 ¡ wz(l(t)) + ¸2(t)(cÃ(l(t)) ¡ ±µ1(t))

9
>=
>;

(35)

where ¹2(t) being the co-state variable associated to µ1(t): The feasible set is zP =
fµ1 ¸ q; p ¸ 0; q ¸ 0;

p
q

¸ µ0g: To simplify notations, as before, I neglect the index

of time. Necessary conditions for a path to be optimal are:

Hp = 0 ! p = bq2 (36)

Hl = 0 ! ¸2 =
w
@z(l)
@l

c
@Ã(l)
@l

(37)

Hµ1 = µ1bq ¡ bq2 ¡ °(µ1 ¡ µSS1 )¡ ¸2± = ½¸2¡
¢
¸2 (38)

along with the transversality condition:

lim
t!1
¹2µ1 = 0 (39)
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I apply Mangasarian’s theorem to check whether these conditions are also su¢-

cient: de…ne V P =
( bµ1)2q2 ¡ p2 ¡ 2q3 bµ1 +2q2p

2q
¡ Cµ1 ¡ wz(l); v2 = cÃ(l(t))¡ ±µ1(t):

I compute: @
2V P

@2µ1
= q ¡ ° · 0 as long as ° ¸ q: Then I compute: @

2v2
@2µ1

= 0;

@2v2
@2l

= c@
2Ã(l)
@2l

· 0, as long as c > 0 and @
2Ã(l)
@2l

· 0, which is always true by

assumption;
@2V
@2p

= ¡2
q
< 0;

@2V
@2l

= ¡w@
2z(l)
@2l

· 0 as long as
@2z(l)
@2l

¸ 0, which

is always true by assumption.It remains to check that, in the optimal solution, the

co-state variable be non negative: ¸2 =
w
@z(l)
@l

c
@Ã(l)
@l

¸ 0 by assumption.Therefore, as

long as ° ¸ q, the necessary conditions of the maximum principle are also su¢cient.
By di¤erentiating (37) w.r.t. time:

¢
¸2=

w
¢
l [
@2z
@2l
@Ã
@l

¡ @z
@l
@2Ã
@2l

]

c[
@Ã
@l

]2
(40)

By inserting (37) and (40) into (38) and by solving for
¢
l I obtain:

¢
l=

³
¡µ1bq + bq2 + °(µ1 ¡ µSS1 ) +

w
c
(± + ½)¯(l)

´ c(
@Ã
@l

)2

w(
@2z
@2l
@Ã
@l ¡ @z@l

@2Ã
@2l )

(41)

with ¯(l) = z0=Ã0; ¯(l)0 = z
00Ã0 ¡ z0Ã00
(Ã0)2

> 0: ¯(l)00 > 0 if z000Ã0 > z0Ã000: Since @
2z
@2l
@Ã
@l
>

@z
@l
@2Ã
@2l

:

sign(
¢
l) = sign(¡µ1bq + bq2 + °(µ1 ¡ µSS1 ) + w

c
(± + ½)¯(l))

>From s.o.c., ° > q, so if µ1 increases l does likewise.
The steady state condition

¢
l= 0 implies:

@Ã
@l

= w
@z
@l

± + ½
c(bq (µ1 ¡ bq)¡ °(µ1 ¡ µSS1 ))

(42)

which, under the assumption that at the steady state µ1 = µSS1 , yields:

µP1 = bq + w(± + ½)cbq ¯ ) xP = w
± + ½
cbq ¯ (43)
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If z000Ã0 > z0Ã000, then ¯ 00 > 0 and µ00 > 0: For the time being, suppose this is the case.
The steady state condition

¢
µ1= 0 implies:

¢
µ1= 0 ! µ1 =

cÃ(l)
±

(44)

I am interested in investigating the dynamics of the system in the positive quad-
rant of the space fl; µ1g, which is described in …gure 3 (see the Appendix). The locus
¢
l= 0 corresponds to the increasing curve that intersects the vertical axe at µ1 = bq.
Moving from the origin, the locus

¢
µ1= 0 draws a curve that may or may not intersect

the locus
¢
l= 0. In the case depicted in …gure 3, two equilibria arise: P1 which is a

saddle, and P2 which is a stable equilibrium. Su¢cient but not necessary conditions
to have equilibrium unicity are: Ã00 = 0 and µ001 · 0.

As a mere illustration of the stability analysis, I focus on the following simple case:
¯(l) = Ã(l) = l. This is, among others, the case of a linear quadratic technology, in
which only one equilibrium arises. From (12) and (41), the dynamic system can be
written in matrix form:

" ¢
µ1
¢
l

#
=

"
¡± c

c
w
(¡bq + °) ± + ½

# ·
µ1
l

¸
+

"
0

c
w
(q2 ¡ °µSS1 )

#

Since the determinant of the above 2 £ 2 matrix is always negative in the relevant
parameter range, the equilibrium is stable along a saddle path.

4.2 The Monopolist’s equilibrium
The current value Hamiltonian for the monopolist’s problem (M) turns out to be:

H = e¡½t

8
<
:

(µ1(t) ¡ p(t)bq )(p(t) ¡ bq2)¡B ¡ °
2
(µSS1 ¡ µ1)2+

¡wz(l(t)) + ¸2(t)(cÃ(l(t)) ¡ ±µ1(t))

9
=
; (45)

where ¸2(t) = ¹2(t)e½t , ¹2(t)being the co-state variable associated to µ1(t): The
feasible set is zM = fµ1 ¸ q; q ¸ p

µ1
; p ¸ q2; pq ¸ µ0g: To simplify notations, I

neglect the index of time. By applying Pontryagin’s maximum principle, necessary
conditions for a path to be optimal are:

Hp = 0 ! p = bq(µ1 + bq)
2

! xM =
µ1 ¡ bq

2
(46)

Hl = 0 !
w
@z(k)
@l
¸2c

=
@Ã(l)
@l

! ¸2 =
w
@z(l)
@l

c
@Ã(l)
@l

(47)
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Hµ1 = p¡ bq2 ¡ °(µ1 ¡ µSS1 ) ¡ ¸2± = ½¸2¡
¢
¸2 (48)

along with the transversality conditions:

lim
t!1
¹2µ1 = 0 (49)

I apply Mangasarian’s su¢ciency theorem: de…ne V M = (µ1¡
p
q
)(p¡q2)¡Cµ1¡wz(l);

v2 = cÃ(l(t)) ¡ ±µ1(t): I compute: @
2V M

@2µ1
= ¡° · 0 as long as ° ¸ 0; which is

always true by assumption; @
2V
@2p

= ¡2
q
< 0; @

2V
@2l

= ¡w@
2z(l)
@2l

· 0 as long as

@2z(l)
@2l

¸ 0, which is always true by assumption. Therefore, the necessary conditions
of the maximum principle are also su¢cient.

By di¤erentiating (47) w.r.t. time:

¢
¸2=

w
¢
l [
@2z
@2l
@Ã
@l

¡ @z
@l
@2Ã
@2l

]

c[
@Ã
@l

]2
(50)

Similarly, by inserting (46), (47) and (50) into (48) and by solving for l I obtain:

¢
l=

c[
@Ã
@l

]2

w(
@2z
@2l
@Ã
@l

¡ @z
@l
@2Ã
@2l

)

8
><
>:

¡1
2
µ1bq +

1
2
bq2+ °(µ1 ¡ µSS1 ) +

w
@z
@l

c
@Ã
@l

(± + ½)

9
>=
>;

(51)

with @
2z(l)
@2l

@Ã(k)
@k

6= @h(l)
@l
@2Ã(l)
@2l

, i.e., the ratio between second derivatives has to
be di¤erent from the corresponding ratio between …rst derivatives.

sign(
¢
l) = sign(¡

1
2
µ1bq +

1
2
bq2 + °(µ1 ¡ µSS1 ) +

w
c
(± + ½)¯(l))

As before, given s.o.c., if µ1 increases l does likewise.
The steady state condition

¢
l= 0 implies:

@Ã
@l

= 2w
@z
@l

± + ½
c(bq (µ1 ¡ bq)¡ 2°(µ1 ¡ µSS1 ))

(52)

By solving (53) for µM1 :

µM1 = bq + 2w(± + ½)
cbq ¯ ) xM = w

± + ½
cbq ¯ (53)
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It is worth noting that xM = xP as long as lM = lP , that is, as long as the monopolist’s
advertising investment coincide with the planner’s.

Assume z000Ã0 > z0Ã000, implying that µ00 > 0:
As before, the steady state condition

¢
µ1= 0 implies:

¢
µ1= 0 ! µ1 =

cÃ(l)
±

(54)

By looking at …gure 4 (see the Appendix) it is possible to make a direct comparison
between the monopolist’s problem and the planner’s in the case in which µ00 > 0. The
above discussion can be summarized by the following:

Proposition 2 In all odd (even) equilibria the monopolist overinvests (underinvests)
in advertising compared with the social optimum. As a consequence, in all odd (even)
equilibria the monopolist oversupplies (undersupplies) the good. If the monopolist’s
advertising investments and the planner’s coincide, then the monopolist ends up with
providing the market with the …rst best quantity level.

5 Product Quality and Advertising Campaigns

Let Á(k) = k; Ã(l) = l and h(k) =
k2

2 ; z(l) =
l2

2 throughout this section; this implies:
¢(k) = k; ¯(l) = l: More generally, let Á(k) = ¢(k) and Ã(l) = ¯(l).

5.1 The social planner’s equilibrium
The Hamiltonian function the social planner faces is:

H = e¡½t

8
><
>:

µ21q2 ¡ 2pµ1q + p2

2q
+ (p¡ q2)(µ1 ¡ p

q
)¡B ¡ °(µSS1 ¡ µ1)2+

¡rk(t)
2

2
¡ wz(t)

2

2
+ ¸1(t)(bk(t) ¡ ±q(t)) + ¸2(t)(cl(t) ¡ ±µ1(t))

9
>=
>;

(55)

where ¸1(t) = ¹1(t)e½t , ¹1(t) being the co-state variable associated to q(t); ¸2(t) =
¹2(t)e½t , ¹2(t) being the co-state variable associated to µ1(t): By using (21) and (41)
the following dynamics obtain:

@k
@t

= k(½ + ±) +
b
r
4qµ1 ¡ µ21 ¡ 3q2

2
(56)

@l
@t

= l(½ + ±) +
c
w
(q(q ¡ µ1) + °(µ1 ¡ µSS1 )) (57)
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The dynamic system (57) and (58) along with the equations of motion (11) and (12)
yields the following steady states11 :

µPSS1 =
9: 9037
2b2

r± (± + a) (58)

qPSS =
2: 7808
2b2

r± (± + a) (59)

xPSS =
3: 561 4
b2

r± (± + a) (60)

5.2 The monopolist’s equilibrium
The Hamiltonian function the monopolist faces is:

H = e¡½t

8
><
>:

(p¡ q2)(µ1 ¡ p
q
)¡B ¡ °(µSS1 ¡ µ1)2+

¡rk(t)
2

2
¡ wz(t)

2

2
+ ¸1(t)(bk(t) ¡ ±q(t)) + ¸2(t)(cl(t) ¡ ±µ1(t))

9
>=
>;

(61)

where ¸1(t) = ¹1(t)e½t , ¹1(t) being the co-state variable associated to q(t); ¸2(t) =
¹2(t)e½t , ¹2(t)being the co-state variable associated to µ1(t): To ease notations, I
drop the indication of time. By using (27) and (51), the following dynamic system
obtains:

@k
@t

= k(½ + ±) +
b
r
4qµ1 ¡ µ21 ¡ 3q2

4
(62)

@l
@t

= l(½+ ±) +
c
w
q(q ¡ µ1) + 2(°(µ1 ¡ µSS1 )

2
(63)

The above system along with the equations of motion (11) and (12) yields:

µMSS1 =
9: 903 7
b2

r± (± + a) (64)

qMSS =
2: 780 8
b2

r± (± + a) (65)

xMSS =
3: 5614
b2

r± (± + a) (66)

with b > 1: 887 2
p
r± (± + a) for x < 1:

Proposition 3 Within a linear quadratic technology, the monopolist invests both in
product quality and advertising campaigns twice as much compared to the social plan-
ner. As a consequence, he provides the market with the …rst best quantity level.

11To ease calculations I assume that b = c and r = w.
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6 Policy implications
The task of this section is to make explicit the properties of the linear quadratic
technology in terms of welfare and discuss them from a policy perspective. The focus
is on e¢ciency. Before proceeding, let me remind you that, at the steady state,
welfare is simply given by the sum between consumers surplus and pro…ts steady
state values, as follows:

WMSS = CSMSS + ¼MSS (67)
First, I compute the level of welfare at the steady state under monopoly regime. By
applying (14) and (10), respectively, and by taking into account that, at the steady
state, capital accumulation stops:

WMSS = r2±2 (± + a)2
80:44 7r±(± + a)¡ 9: 9036b2

b6
¡B (68)

where

CSMSS = 1
4
((µ
MSS
1 )2

2
qMSS ¡ µMSS1 (qMSS)2 + (qMSS)3

2
)

=
17: 636
b6
r3±3 (± + a)3 (69)

¼MSS = 0:0024759r2±2 (± + a)2
25369r±(± + a) ¡ 4000b2

b6
¡B (70)

with B small enough to respect the usual non negative constraints and b < 2:
8501

p
r± (± + a) for WMSS to be positive.

The corresponding computation under social planning is omitted, since it is not
possible to compare the welfare arising from markets in which the intercept term of
the demand functions di¤ers, as it is in our case. Rather, I focus onWMSS , aimed at
investigating which are its responses to di¤erent policy regulations. Assume that the
government may choose between two kinds of policies: (i) to a¤ect the instantaneous
investment costs, through r; (ii) to a¤ect the accumulation process, through b. Notice
that, in order to obtain manageable solutions, I have assumed that c = b and w = r:
As a consequence, b enters the accumulation of both quality and reservation price,
while r denotes the price of both speci…c inputs, k and l. Consider, …rst, policy (i).
Its e¤ect is given by:

@WMSS

@r = 232 533 (± + ½)3 r2
±3

b6 > 0 (71)

Therefore, a marginal increase in r yields welfare improvements, since it hinders the
acquisition of capital.

As to policy (ii), its e¤ect is given by:

@WMSS

@b
= ¡465 066 (± + ½)3 r3

±3

b7
< 0 (72)
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Therefore, a marginal decrease in b yields welfare improvements, since it slows down
the accumulation of capital.

In order to understand which of the two policies should be preferred, I consider
the following equation: ¯̄

¯̄@WMSS
@b

¯̄
¯̄ = 2r

b

¯̄
¯̄@WMSS
@r

¯̄
¯̄ (73)

It is immediate to draw from it:

Proposition 4 As long as input prices are su¢ciently high, r >
b
2
, it is optimal

to reduce the accumulation of capital through the equations of motion, both w.r.t.
consumers’surplus and pro…ts. This amounts to saying that regulation (ii) should be
preferred to regulation (i).

7 Concluding remarks
The comparison between static and dynamic ine¢ciencies which are due to a monop-
olistic structure dates back to Schumpeter (1942). In accordance with him, I have
shown that, when both product quality and advertising investments are activated, a
monopolist is more innovator than a social planner. More surprisingly, I have shown
that his traditional tendency to undersupply quantities is not robust to a dynamic
setting. The basic implication of this result is that, in weighing the pros and cons of
a monopolistic structure, one should be aware of making explicit the time horizon at
which he refers itself. Indeed, quantity distortions are present in the short run, as we
know from static analyses, but they vanish in the long run, within a linear-quadratic
technology, at least. Further developments are needed to understand the extent to
which a vertical di¤erentiated monopolist may provide the market with the …rst best
quantity level, a result which, per se, deserves some attentions. As to product quality
provision, the existing literature dealing with static models has not reached homoge-
nous results, while dynamic analyses have been almost completely absconding. The
result I have obtained is that, for any given reservation price, the monopolist always
underinvests compared to the social planner. In my paper, I have also studied the
appropriate policy implications w.r.t. the investments in R&D jointly considered: for
a relatively low level of input prices, I have shown that it is optimal for the govern-
ment increasing them up to a critical threshold, above which it becomes optimal to
slow down the accumulation of capital.
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8 Graphical Appendix

Figure 1 : Planner’s Phase Diagram
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Figure 2 : Monopolist vs Planner
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Figure 3 : Planner’s Phase Diagram
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