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THE RATIONALITY OF INFORMATION GATHERING: OLIGOPOLY 

By Isabella Imperato 

 

 

1.  Introduction 

This paper is concerned with the optimal use of information in a standard oligopoly model, 

where information processing is costly. The basic motivation for this work comes from the 

observation that often expectations are not perfectly (or not at all) correlated to fundamentals, and 

that the “mood of the market” can change abruptly, even in the absence of news. In the existing 

literature, the most appealing explanations for these phenomena focus on the mechanism of 

coordination of beliefs and the revelation of insider information through the process of trading. A 

certain degree of informational asymmetry among economic agents is often exogenously given.               

However, such assumptions can be applied only to some well-specified markets, notably the 

financial markets. Other attempts to throw sand in the wheels of the basic rational expectations 

hypothesis (REH) comprise approaches where sluggish action is the result of either institutional 

constraints, or costs related to action, and approaches that modify the expectation process itself. The 

two approaches are generally seen as unrelated, yet this dichotomy may be too extreme.  

The REH contains an internal contradiction, first underlined Grossman and Stiglitz (1980): 

if everyone has free access to information, nobody is rewarded for the real resources that go into its 

collection and processing, so that an “informationally efficient” equilibrium does not exist. In the 

same vein, this paper shows how explicit analysis of the cost of processing information can lead to 

optimally designed time-dependant rules, where there are periods during which a rational agent 

chooses to be less than fully informed, so that the property of orthogonality among forecast errors 

and available information does not necessarily hold: learning occurs at discrete intervals.  

I apply the above concepts to a simple oligopoly model, where agents must pay a fixed, sunk 

cost for using information about the state. This cost is referred to as the cost of thinking, intending 

the procedure through which people organise and then elaborate information. The first result of the 

paper is that thinking occurs at discrete time intervals: the optimal lag between each subsequent 
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updating of the information set is increasing in the cost of thinking itself (information need not be 

costly here, it is sufficient that it is costly to process it), while it is decreasing in the unconditional 

variance of the stochastic state variable (bigger uncertainty produces more intensive thinking). The 

second result – and possibly the more interesting from the point of view of public policy - is that, 

even if the producers do not share information, an informational externality is present, so that firms 

will optimally think at different times: thinking is staggered, and asymmetric information becomes 

an endogenous feature of the equilibrium – consistently with Grossman and Stiglitz’ (1980) results. 

Finally, I find a negative correlation between the incentive for the firm to acquire information and 

the degree of competition on the market: monopoly and oligopoly firms use more information than 

competitive firms.  

The interactions between the degree of market competition and the “information intensity” 

of an economy may have interesting (and disregarded) implications for the design of public 

policies. Think for example at market liberalisation policies: it may well be the case that induced 

differences in the frequency of decision-making represent a theoretical case for accompanying 

liberalizations with policies of disclosure and transparency, aimed at reducing information costs.  

 

 

2. The model 

The market is constituted by n identical firms, each of them maximising her revenues. 

Demand at time t is represented by the following price equation 

 

( ) ( ) ( )tqttp βα −=            (1) 

 

where p denotes price and q is quantity. Overall production q is the sum of individuals productions 

qi. The intercept α is stochastic: it obeys a mean reverting process 

 

( ) dzdtkd σαµα +−=                     (2) 

 

with long-run mean µ, speed of adjustment k>0, and diffusion coefficient σ; z is a standard Wiener 

process. The unconditional mean of the process is µ, and its unconditional variance is equal to  

σ2/2k. Given an initial condition 

 

( ) t≤= τατα τ               (3) 
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the conditional first and second moments of the process can be simply derived by multiplying both 

sides of (2) by exp(kt) and integrating by parts between τ and t, getting 

 

 ( )[ ] ( ) ( )τ
ττ αµµαα −−−−= tketE   

                (4) 

     ( )[ ] ( ) ( )[ ]{ }( ) ( )[ ]τ
ττ

σααααα −−−=−== tke
k

tEtEtV 2
2

2 1
2

var    

 

For the sake of simplicity, production costs are normalised to zero. I hence assume that 

output is chosen by each producer to maximise her revenues, net of any other costs that may occur 

in the process. It is well known  that repeated interaction among oligopolists yields multiple 

equilibria. The aim of the present paper, however, is not to add any insights into the Cournot 

repeated game problem, but to introduce in oligopoly a trade-off between “good forecasts” and their 

cost. For this purpose, I will pick up only one out of the possible equilibria, that is the one-shot 

Nash solution reproduced at each stage of the game.  

 It now becomes crucial to specify the informational characteristics of the present model. 

First, I rule out model uncertainty by assuming that both the structure of the model and the 

stochastic process, which governs the evolution of the intercept of the demand function, are known. 

Moreover, I assume that the information about the value taken by contemporaneous α is freely 

available, but that using it to make an output choice entails a fixed, sunk cost equal to b, to which I 

shall henceforth refer to as the cost of thinking.1 Thinking is the procedure through which people 

organise and then elaborate information. The agent has to devise a time-dependant strategy where 

she decides how frequently to think, and how frequently to pay the related cost. The latter can hence 

be interpreted in many ways. It could be the fixed cost of accessing facilities that will help with the 

decision process, such as libraries, consultants, time. It could also be the effort required to switch 

from a routinely behaviour to proactive – and stressful – assessment of whether change is required. 

In any case, it should not be confused with the cost of information itself: it is specific to the agent 

and her environment, not to the type or amount of information needed.  

 When the producer thinks, she acquires full information on all past and current values of 

prices, quantities and shocks. On the contrary, she cannot directly observe whether her opponents 

are as well thinking. When non-thinking, the oligopolist does not acquire or use new information, so 

 
1 This concept has been already introduced in a paper co-authored with David K.H. Begg on “The rationality of 
Information gathering: Monopoly”, in The Manchester School, Vol. 69 n. 3, 237-252, June 2001.  
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that she must rely on information acquired in the past (at τi≤t for example) and update it in a 

“mechanical” way, which takes into account the structure of the model but not the shocks that may 

have taken place lately (from τi to t). 

 At each stage of the game, each producer decides whether or not to think, then she fixes 

production at her best guess of the “Cournot” level. With full information, the quantity supplied at 

any time by agent i, given the other agents’ productions, would be 

 

β

βα

2

∑
≠∗

−
= ij

jtt

it

q
q              (5) 

 

However, contemporaneous α cannot be taken into account unless the producer pays a cost 

equal to b, i.e. thinks. Hence, I must allow for some degree of “ignorance”. At the same time, I will 

allow for some degree of asymmetric information, since there is no guarantee that producers will 

think together. In the following, I define τ1,…,τn the latest thinking times  of producers from 1 to n, 

where τ1≤,…,≤τn , so that producer n is the best informed. Her effective reaction function is 

 

( ) 







−= ∑

−

=

1

12
1 n

j
jttnnt qEq βα

β
           (6) 

 

where to avoid cumbersome notation I term En the expectation conditional on having last thought at 

time τn. Producer n-1 is more informed than the others but producer n: her reaction function is  

 

             ( ) ( )







−−= −

−

=
−− ∑ ntn

n

j
jttntn qEqEq 1

2

1
1,1 2

1 ββα
β

      (7) 

 

By substituting the conditional expected value of (6) into (7) I get 

 

             ( ) 







−= ∑

−

=
−−

2

1
1,1 3

1 n

j
jttntn qEq βα

β
        (8) 

 

Applying recursively this method to all agents, I can write down a whole system of reaction 

function, whose generic one is 
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System (9) is a system of n equations, where the quantity produced by a single agent qi 

depends on that produced by the others and on the producer’s expected α value. After solving, each 

qi will depend on the α’s expected by each of the producers, that is on all producers’ information 

sets. Given that information sets depend on the τ’s – the last thinking times of the producers – 

production levels are as well functions of the τ’s, and are specified for any given set of  thinking 

times. In other words, I can interpret the system (9) as a collection of reaction functions in the 

thinking times τ. The τ’s are uncertain variables, but in a strategic sense.2 

 Equations (1) and (5) together imply that – given the competitors’ production levels – 

individual instantaneous revenues are smaller than full information revenues by an amount 

proportional to the quadratic difference between full information and effective production (qi*-qi)2, 

which in the following I will label F. The latter can thus be interpreted as the cost of not taking into 

account all the available information. Since the thinking cost is equal to b, the trade-off between 

thinking and non-thinking, or between making an active decision and continuing the preceding 

routine, will depend on the instantaneous loss: 

 

 ( )[ ] bFbqqE ii +=+−
2*         (10) 

 

where b≥0 in a thinking time and b=0 otherwise.3  

 

 

3. The optimisation  

The relevant instantaneous loss for the optimisation is that of firm 1.4 Indeed, given the 

above assumptions on the informational structure, producer 1 is either as well informed as the 

others, and her case is representative, or she is the less informed, and hence she is the one who is in 

the process of deciding whether or not to think.5 In other terms, whenever the thinking time comes, 

 
2 In the same way as in a textbook Cournot model there is strategic uncertainty about one’s opponent’s production level, 
which is consequently written in levels and not in expectations inside the reaction function.  
3 For a diagrammatic illustration of the above concept, see Begg and Imperato (2001), section 2. See the same paper for 
a throughout discussion on the implication of the linearity assumption of the demand curve.  
4 In the following, I will shift to the appendices the algebra that was already developed – or is very similar to that shown 
– in Begg and Imperato (2001).  
5 I have excluded the possibility of some herd behaviour, where a portion of firms think contemporaneously at some 
dates and the others either contemporaneously at some other dates, or as above at different rates. This because- as will 
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the firm who is going to think is the less informed, and this is exactly the point where a balance 

must be found between the cost of thinking and its revenue (that is, the cost of non-thinking).  

Applying equations (5) and (9) to the first producer, after some algebra6 the expected 

squared deviation of her production from its full information level turns out to be equal to 
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The oligopolist faces a problem of optimal stopping: she must decide at every time t whether 

to apply the control (think) and get some termination payoff, including the cost b of exercising the 

control, or to continue to rely on some old information. The variable under control is the expected 

squared deviation of output from its full information level q* (F). This variable is left free to rise 

until it reaches the upper border of the continuation region, then it is driven back to zero by 

thinking. Hence, agents must devise a time-dependant optimal strategy defined in terms of thinking 

times. The optimisation implies exploitation of the trade-off between the cost of thinking (b) and its 

benefit (a smaller expected squared deviation between effective and full information production). In 

the following, I shall define ∆ the time lag between the last thinking time τ and the next; at t-τ=∆ 

the state variable F reaches its upper barrier, that I shall call m.  

 

3.1 Duopoly 

To make understanding easier, I will begin with duopoly. With n=2, equation (11) becomes  
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The global loss of producer 1 over the infinite time horizon is given by the present 

discounted value of losses F plus thinking costs: 

 

 
be shown in the following, thinking all together is not an equilibrium, and the same reasoning that proves the above 
statement can be used to rule out the appearance of thinking groups. This is of course a consequence of excluding the 
possibility of collusive strategies.  
6 See Appendix 1. 
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( )

tsthinkingdsFeL
s

cos
1

1

+=
−−∞

∫
τρ

τ

        (13) 

 

where 0<ρ<1 is the discount rate. 

Graphically, we have 

 

           τ1                         τ2           t             τ1+∆ 

---------+--------------------+--------------------+---------- 

 

The relevant continuation region is the interval (τ1, τ1+∆). At the upper border of this region, 

producer 1 thinks, that is she pays the  cost b and brings q1*-q1 to zero.  

In the following, I will rely on the methodology shown in Dixit (1991), where a similar 

problem is treated by means of its discrete approximation. For an intuitive treatment, see also Dixit 

and Pindyck (1994). Time is divided into discrete intervals of length δ: accordingly, F ranges over a 

discrete set of values Fl, where l goes from 0 to u (which corresponds to the upper border of the 

continuation region). Fl makes discrete jumps ϕ=Fl+1-Fl.  

First, suppose the boundary m and its discrete approximation u are given. Define 

 

( )ulff l ,....,0==             (14) 

 

as the column vector of the squared forecast errors, plus adjustment costs (which arise at u). 

Then, let L be the column vector corresponding to the overall loss L, whose the component is L(Fl), 

the present value of losses plus control costs starting from state l. 

 

( ) Lefqf
q

ρδρδ −
∞

=

+=→−=∑ L
0

expL                (15) 

 

From (15), it is easy to derive the value-matching condition, that holds at any boundary (for 

l=u), and states that the reduction in loss by exercising the control must match its cost.7  

 

( ) ( ) bLmL =− 0        (16) 

 

 
7 See appendix 2.  
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I now turn to points inside the continuation region (i.e. for l<u, where no thinking costs are 

paid). In the relevant range of the continuation region, that is on the right-hand side of τ2 in the 

figure above, the generic discrete F is 

 

( )
( )

( )
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2
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where nδ is the discrete-time equivalent of the difference τ2-τ1. Calculating the difference 

ϕ=Fl+1-Fl and equating it to the discrete-time equivalent of the time differential of (12), it results that 

the following must hold: 

 

( ) ( ) δ
β
σϕ δδ





 −−==− −−−

+
knnlk

ll eeFF 22
2

2

1 1
4
11

4
           (18) 

 

The Taylor series expansion of (18) around δ=0 gives 

 

( )δοδ
β
σϕ += 2

2

4
                    (19) 

 

 The same relationship (19) holds in the left-hand side of the continuation region (for points 

between τ1 and τ2).8 Thanks to this result, the definition (15) can be used to show that for internal 

states the global loss obeys a first-order linear differential equation9 

 

( ) ( ) 0
4 2

2

=+− FFLFL ρ
β
σ         (20) 

  

The region over which the differential equation (20) holds is endogenous, since it depends 

on the boundary m, where the control is exercised (the producer thinks). Here, the so called smooth 

pasting condition must apply, that characterises the boundary as optimal by imposing the equality 

between the marginal cost of exercising and that of not exercising the control.10 

 

 
8 See Appendix 3. 
9 See Appendix 4. 
10 For a throughout theoretical discussion on the value matching and smooth pasting conditions in optimal stopping 
problems see Dixit and Pindyck (1993), the Appendix to Chapter 4.   
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( ) ( )0'' LmL =∗           (21) 

 

where m* is the optimum boundary, that is the value taken by the expected squared forecast error F 

at time t=τ1+∆, being ∆ the time lag between two successive applications of the control, i.e. two 

successive thinking times (see the figure). The solution of (20) consistent with (21) is 

 

 ( ) FFL
ρρβ

σ 1
4 22

2

+=         (22) 

 

The optimum boundary m* can now be derived. Write (22) for F=m* and F=0: 
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Substitute (23) in the value-matching condition (16), and the optimality condition obtains: 

 

ρ
*mb =          (24) 

 

 

3.2 Oligopoly 

 The optimality condition obtained above is fairly general, since it holds regardless the 

number of firms. Indeed, the Taylor series approximation of ϕ=Fl+1-Fl is o(δ) even if F is expressed 

for a generic number of firms as in (11), number that may range from 1 to infinity. In the following, 

I will analyse the equilibrium informational characteristics of the optimum in oligopoly, to be able 

to find an explicit expression for m*. The latter in fact turns out to be different depending on the 

producers’ relative thinking times, which can in principle be the same for all (thinking 

contemporaneously), or not (thinking in groups and thinking at different times).  
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3.2.1 Thinking contemporaneously 

The generic firm (let us say firm 1) must decide whether to think given that all the others are 

thinking. The relevant loss is then (11) with τj=t for j≠1 and τ2-τ1=t-τ1=∆. The optimality condition 

(24) becomes: 
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nk
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σ         (25) 

 

Let us assume (25) is satisfied, so that all producers think contemporaneously. In such a 

case, however, the expected squared deviation of actual from full information output must be equal 

to (11) after posting equality of all the τi. On the boundary (at t=τ+∆), equality (24) must hold, 

which implies:  
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ρβ
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Equations (25) and (26) are only consistent iff b=0, that is iff ∆*=0 and, trivially, in the case 

of monopoly (n=1). Hence, for positive thinking costs, this cannot be a Nash equilibrium. 

 

 

3.2.2 Thinking in groups 

 There is the possibility that some firms think at the same dates, and the others not. I will 

make here the simplest case: all firms but one think at the same times.  

 Let us say that all the firms from 1 to n-1 last thought at the same τ1, whilst firm n last 

thought at τn, with τ1<τn. Now, let us analyse the choice of one of the n-1 firms, for example firm 1. 

at τ1+∆ her expected squared deviation from full information output, given that the other firms are 

following the described strategy, would be equal to (11) with τj=t for j=2,…,n-1 and τ2-τ1=t-τ1=∆: 
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It would be optimal for firms from 1 to n-1 to update their information sets at τ1+∆* if and 

only if (27) verifies the optimality condition (24), that is if its right-hand side divided by the 

discount rate is equal to b. However, if all the firms except firm n think at the same times, their loss 

becomes: 
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The optimality condition (24) requires that at τ1+∆* the right-hand side of (28) divided by 

the discount rate is equal to b. The two conditions can be jointly verified if and only if b=0, which 

would however imply that all the firms (n included) are thinking together all the time. Hence, 

thinking in groups cannot be an equilibrium. 

 

3.2.3 Thinking at different times 

Let us say that all producers think at different times, with a generic lag ai∆ between τi and 

τi+1, where the sum of the a’s is equal to 1.  

 

        a1        a2       a3         ………                an    t 

---+------+------+------+------+------+------+------+------+--- 

               τ1       τ2       τ3       τ4  ………             τn     τ1+∆ 

 

 After substituting the above notation into (11) and applying the optimality condition (24), 

the following results: 
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 Condition (29) must be verified for all the firms once they approach their respective thinking 

times. i.e. it must apply with shifting ai’s. Hence, it must be true that the ai’s are all identical and 

equal to 1/n. Substituting into (29): 
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The above expression can be also written as 
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 Equation (31) identifies the only Nash equilibrium of this game. In equilibrium, every 

oligopolist thinks exactly at an intermediate point in time between the last thinking time of the 

previous and the next thinking time of the following producer. Hence, I shall call this a “think in the 

middle” strategy. 

 

 3.2.4 Intuition of the result and comparative statics 

 For positive finite values of the parameters on the right-hand side of (31), the optimal 

strategy is that of thinking continuously (∆*=0) if and only if the cost b is equal to zero. In such a 

case, all the producers use the same information set all the time, that is they continuously take into 

account the true realization of the stochastic variable α when making decisions. Information is fully 

exploited and the solution maintains all the features of standard rationality.  

If however b is positive, (31) expresses the optimal lag ∆* as a function of the cost itself, the 

price elasticity β, the speed of convergence of the stochastic intercept towards its long-run mean k, 

the diffusion coefficient σ, the discount rate ρ and the number of firms n. In this case, a “think in 

the middle” strategy obtains, so that the producers will decide to use different information sets at 

any time. The intuition behind this result is that there is a positive externality of thinking, that 

however has nothing to do with information sharing. When a producer thinks, she gets a loss equal 

to b regardless what her opponents do. Instead, at times when she is not updating her information 

set, she is better off if the other oligopolists think. This happens because the agent who thinks acts 
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as a sort of buffer, pushing the effective price towards the level expected by the others. This can 

give rise to a sort of “free riding” problem. A graphical example with only two firms can help to 

explain this idea.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 A negative demand shock pushes the demand function to its left. If the duopolist (let us say 

1) does not think, she will not observe the shock and she will produce 0-A, i.e. more than would be 

optimal. Remember that 1’s competitor can be equally or better informed. In either case, 1’s best 

guess is that 2 produces as much as herself, (A-B)so that she expects the price to go to pe. If 2 uses 

the same information set as 1 (think contemporaneously case), she will indeed produce A-B and the 

price would go to p1. If on the contrary producer 2 thinks, she takes into account the negative 

demand shock and produces the smaller quantity A-C, so that the price goes to p0, which is closer 

than p1 to the price pe, expected by producer 1. This also implies a smaller expected squared 

deviation of 1’s production from its full information level, so that it implies a positive externality 

for the producer that does not think. In this sense, the thinking producer acts as a residual stabiliser, 

so that the marginal benefit of thinking for the other producer shrinks and, given the cost b, she 

prefers to wait. The “thinking in the middle” strategy is the only Nash equilibrium because it makes 

each producer able to exploit at best this externality.  

  Equation (31) can be used to perform some comparative statics. The effect of a larger cost b 

on the optimal thinking lag ∆* is straightforward: as the cost of thinking rises, agents update their 

p 

pe 
p0 
p1 

0 A C B 

Effective demand 

Expected demand 
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data sets less frequently. A rise in the instantaneous variance of the stochastic component α 

shortens the time lag between thinking times: more uncertainty is connected with bigger expected 

forecasts errors in absolute value, increasing the cost of inaction and making it preferable to update 

more frequently one’s information set. The more reactive is the demand price to quantity (the bigger 

is β) and the less are people worried about the future (the higher is ρ), the wider is optimal ∆. 

Indeed, a larger elasticity raises ∆* because a given forecast error gives rise to smaller losses: 

inappropriate output levels have smaller revenue consequences when demand is more elastic. The 

positive effect of a bigger discount rate on the optimal thinking lag is due to the fact that the 

producer attributes a larger weight to present thinking costs than to future forecast errors, and tends 

to postpone the cost itself. As far as the effect on equilibrium of the speed of convergence k is 

concerned, a faster speed of convergence (higher k) yields less frequent updating of the information 

set (bigger ∆*): more rapid convergence implies smaller forecast errors and justifies longer periods 

of inaction. This effect however vanishes when  ∆*=0, i.e. when agents continuously update their 

information sets. 

Finally, since the right-hand side of (31) is decreasing with n and increasing with ∆, as the 

number of firms increases the optimal ∆ must widen. As n tends to infinity, (as the oligopoly model 

tends to perfect competition), the marginal benefit of thinking tends to become negligible (the right-

hand side of 31 goes to zero) so that the optimal thinking lag widens enormously. This is an 

interesting feature of the present model. It confirms Hwang’s results, that competitive firms acquire 

less information than oligopolistic firms. Moreover, it points directly to Grossman and Stiglitz 

(1980) “impossibility of informationally efficient markets”: if information collection or utilisation is 

costly, in a competitive environment nobody will have the incentive to acquire new information.  

To get an intuition of the above result, it must be added that – as the number of firms 

increases - the optimal thinking lag ∆* for any single firm rises, but the overall frequency of 

thinking is also higher. To make an example, a duopolist updates her information set more 

occasionally than a monopolist, but thinking by one of the two happens more frequently then 

thinking by the monopolist. This happens because global production in duopoly is bigger, so that on 

average it pays more to think.  

As a consequence of the informational strategy adopted in equilibrium, the “buffer” effect 

exerted by the thinking firm, that pushes prices closer to the level expected by the other – non-

thinking – producers, is enhanced when the number of firms increases. In a competitive 

environment (with many firms), almost at every time there is somebody who is thinking: this, in 

addiction to the fact that for given demand each firm can appropriate a smaller market share, 
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renders the marginal benefit of thinking more and more negligible in comparison to its cost. As a 

consequence, the optimal lag between successive thinking times widens. 

  
 

4. Conclusions 

This paper extends the analysis and the methodology developed in a previous work to a 

model of oligopoly,11 where agents must pay a fixed, sunk cost for using information about the 

state. This cost is referred to as the cost of thinking, intending the procedure through which people 

organise and then elaborate information. The optimisation renders a time-dependent rule, where 

thinking occurs at discrete time intervals: the optimal lag between each subsequent updating of the 

information set is increasing in the cost of thinking itself, while it is decreasing in the unconditional 

variance of the stochastic state variable (bigger uncertainty produces more intensive thinking). 

The entirely new result here is that, even if the producers do not share information, an 

informational externality is present, so that firms will optimally think at different times: thinking is 

staggered, and asymmetric information becomes an endogenous feature of the equilibrium – 

consistently with Grossman and Stiglitz’ (1980) outcome. It is important to note that the 

informational externality has nothing to do with the revelation of information through prices, since I 

assume that all information is virtually at the disposal of everybody at zero cost, and that the 

relevant cost must be paid for processing rather than for acquiring it.  

I also find a negative correlation between the incentive for the firm to acquire information 

and the degree of competition on the market: monopoly and oligopoly firms use more information 

than competitive firms. Indeed, the amount of information that is gathered and used is endogenous, 

or better it is regime specific. Different market structures – and different forms of public 

interventions to combat market failures – will induce differences in the frequency of decision-

making and the average quality of information on which actions are based. The design of policy 

must therefore have regard to its informational implications.  

 
 

Isabella Imperato 
Ministry of the economy and Finance – Rome 

 
11 Begg-Imperato (2001). 
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Appendix 1 

In this demonstration, I will use the following property of the mean reverting process α 
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Applying (9) in the text to producer 1, the one who thought firs and is hence the less 

informed, I get 
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Using A2 in conjunction with equation (5) with 1 substituted for i 
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To compute the right hand side of A3, I first calculate the sum from firm 1 onwards, then 

subtract q1.  Applying recursively (9), the sum of production levels from 1 to a generic i is equal to 
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The sum from 1 to n can be found substituting i with n, which gives 
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Subtracting A2 from A5 and simplifying I get 
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and, finally, substituting A6 and A2 into A3: 
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Using A1, the right-hand side of A7 becomes 
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whose expected squared value is equal to (11) in the text.  
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Appendix 2 

Definition (14) in the text implies that, for the extreme state l=u, fl=b+δFl, so that (13) 

becomes 

( ) ( ) ( )1exp +−++= lll FLFbFL ρδδ        (A9) 

 

Multiplying by exp(ρδ) and rearranging terms we get 

 

( ) ( ) ( ) ( ) ( )bFFLFL lll ρδρδδρδ expexpexp 1 +=− +      (A10) 

 

Where ϕ=Fl+1-Fl is o(δ).12 Equation (A10) can be expanded using a Taylor series. Its left-

hand side expands to 
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And its right-hand side expands to 
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Equation (A11) can be written as 

 

 ( ) ( ) ( )δΩ+− +1ll FLFL         (A13) 

 

Where Ω(δ) comprises terms such that Ω(δ)/δ stays bounded above as δ approaches zero. 

Using this notation, (A12) becomes 

 

( )δΩ+b           (A14) 

 

Equating (A13) to (A14) and letting δ go to zero I get the value matching condition (16) in 

the text. 

 
 
12 See equation (19) in the text  
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Appendix 3 

 
Between τ1 and τ2, the squared deviation of production from its full information level F must 

be computed under the assumption that producer 1 is more informed than producer 2. Using (5), 

after substituting to α its expected value, her effective production is equal to 
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Her full information production can be easily derived form (5), so that the squared 

divergence F becomes 
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Applying to (A16) the same discretisation process used for (17), (19) obtains. 

 

 

 

Appendix 4 

 
For internal states (l≤u-1), the global loss (15) becomes  

 

( ) ( ) ( )1exp +−+= lll FLFFL ρδδ        (A17) 

 

Multiplying both terms by exp(ρδ) and rearranging, (A17) becomes  

 

( ) ( ) ( ) ( ) δρδρδ lll FFLFL expexp 1 =− +       (A18) 

 

whose right-hand side expands to 
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The left-hand side can be re-written as 

 

( ) ( )[ ] ( ) ( )[ ]lll FLFLFL −−− +11exp ρδ       (A20) 

 

whose first-order expansion is 

( ) ( ) ( )[ ]ϕϕρδ oFLFL ll +− '         (A21) 

 

Now, put (A19) and (A21) together, substitute ϕ with (19), divide both terms by δ and let δ 

go to zero. Replacing Fl by F, the present value of losses obeys the first-order linear differential 

equation (20) in the text.  
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