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Abstract 
 
 

Recently van De Van, Creedy and Lambert (2001) and Urban and Lambert (2008) have reconsidered the 

original Aronson, Johnson and Lambert (1994) decomposition of the redistributive effect in order to 

identify the optimal bandwidth that should be used in decomposing the redistributive effect when groups 

with close pre-tax incomes are considered. The methodology proposed by van De Van, Creedy and 

Lambert (2001) suggests choosing as the optimal bandwidth the one which maximizes the ratio between 

the potential effect V (which depends on the bandwidth) and the actual redistributive effect RE (which is 

invariant). Urban and Lambert (2008) discuss a set of further possible decompositions of the 

redistributive effect together with a decomposition of the Atkinson-Plotnick-Kakwani index into three 

terms. In this paper we want to throw some more light on the behavior of three of the main 

decompositions analyzed by Urban and Lambert (2008) in order to look for criteria to choose a bandwidth 

which allows the three different definitions of potential redistributive effect to be assumed as coherent as 

possible values and, in the meanwhile, to catch as much as possible of the potential vertical effect. We 

suggest looking for the bandwidth where the ratio between the maximum distance among the different 

potential vertical effect definitions and the minimum among the different potential vertical effects is 

minimum. 
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1. Introduction 
 
Decomposing redistributive effect across groups of pre-tax equals into vertical, 

horizontal and reranking effect has been intensively studied in recent years. The original 

work by Aronson, Johnson and Lambert (1994), hereafter AJL, considers exact pre-tax 

equals in portioning the pre-tax income distribution. 

As van de Ven, Creedy and Lambert (2001), hereafter VCL, pointed out, in taxation this 

is not the casein reality: only groups with close pre-tax incomes can be considered. 

They overcame this problem in order to identify the optimal bandwidth that should be 

used in decomposing the redistributive effect. Therefore, VCL methodology suggests 

choosing as the optimal bandwidth the one which maximizes the ratio between the 

potential effect (which depends on the bandwidth) and the actual redistributive effect 

(which is invariant). Here a problem arises as this ratio may have more than one relative 

maximum and presents a layout which may be irregular, and somewhere quite irregular; 

as a consequence, identifying univocally the maximum is not so obvious (Vernizzi and 

Pellegrino 2007). 

Urban and Lambert (2008), hereafter UL, present an exhaustive discussion on a 

complete set of possible redistributive effect decompositions, and introduce new 

indexes based on the taxation of close equals by their average tax rate. 

In this work we would like to contribute to VCL’s and UL’s discussions with some 

suggestions about the choice of a convenient bandwidth by intensively looking at the 

empirical analysis. We conclude by looking for the bandwidth (or for a set of 

bandwidths) where the ratio between the maximum distance among the different 
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potential vertical effect definitions and the minimum among the different potential 

vertical effects is minimum. 

 

The structure of the paper is as follows. In Section 2 we recall how the original AJL 

decomposition should be applied in the real world where strict equals groups are rare 

and, consequently, they must be replaced by “close equals” groups; to overcome this 

problem, according to UL’s suggestions, alternative RE decompositions are introduced 

together with the decomposition of the Atkinson-Plotnick-Kakwani index (hereafter 

APKR )1. In Section 3 we report the values the indexes assume at bandwidth limits, that 

is either when the bandwidth tends to zero or when it covers the whole income 

distribution range; then we outline some preliminary a priori considerations about some 

aspects of their behavior. The empirical behavior of indexes is analyzed in Section 4. 

Section 5 discusses whenever a bandwidth with “optimal” or at least “desirable” 

properties can be identified. Section 6 concludes. 

2. Redistribution and reranking indexes 
 
Let yG  and TyG −  be the Gini index on the gross and net incomes respectively. The 

redistributive index RE is equal to Tyy GGRE −−= . It is well-known that the Gini 

coefficient fails to decompose across subgroups into, between and within group 

inequality components in case subgroup income ranges overlap. When considering the 

pre-tax income parade, if groups are selected in a sequential order, so that a pooling of 

all groups incomes is in a non decreasing order, we have that B W
y y yG G G= + , where B

yG  

                                                 
1 The decomposition of RAPK is described and discussed in Urban and Lambert (2005); for further details see Vernizzi (2007). 



 3

is the between-group Gini pre-tax index and W
yG  is the within-group Gini pre-tax 

index2. However, if post-tax income groups contain the same subjects they did before 

taxation, it is no longer granted that the after tax maximum value in the i-th group is not 

greater than the minimum value in the 1+i -th group and that no intersection (or 

overlapping) effect appears among groups. 

If taxation induces overlapping among groups, the post-tax Gini index becomes 

B W t
y T y T y T y TG G G G− − − −= + + , where 3 ( )t AJL B W

y T y T y T y TG R G G G− − − −= = − + . 

When exact equals are considered 

In their seminal paper, AJL not only organize groups so that no overlapping effect exists 

for pre-tax groups, but also implicitly assume that for the after-tax income parade (i) the 

group averages maintain the same ranking as before taxation and (ii) the within group 

orderings remain the same as before taxation. If this is the case, the post-tax 

concentration index (evaluated when post-tax incomes are ordered according to the 

                                                 
2 B

yG  is the Gini index for pre-tax incomes when within each group all incomes are substituted by their group average; 

, ,
W
y k y k y

k
G a G= ∑ , where ,k yG  is the Gini index for the k-th group and ,k ya  is the product of the k-th group  population share and 

pre-tax income share. 

3 B
y TG −  and , ,

W
y T k y T k y T

k
G a G− − −= ∑  are the analog forms for B

yG  and W
yG  when incomes have been taxed; in particular ,k y Ta −  

is the product of the k-th group population share and post-tax income share. t
y TG −  is what Dagum (1997) calls “the transvariation 

term”. In UL notation 4
AJL

y TR G D−= − , where 4
B W
y T y TD G G− −= +  is the concentration index for the after tax income parade, 

ordered according to non decreasing group averages and, within each group, in a non decreasing order. The relations which involves 

Gini and concentration indexes components are analyzed, e.g., in Vernizzi (2007). 
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order they had before taxation) is ( )B W
y T y TG G− −+ , so that AJL APKR R= , being APKR  the 

Atkinson-Plotnick-Kakwani reranking index4. 

If we split yG  and TyG −  into the above described components, as AJL do, the 

redistributive effect can be written as ( ) ( )B B W W APK
y y T y T yRE G G G G R− −= − − − − . A 

further simplification can be applied when the analysis is limited to the case in which 

the population groups contain exact pre-tax equals, which implies 0=W
yG  and 

y
B
y GG = . In this case the redistributive effect can be expressed as 

( )B W APK
y y T y TRE G G G R− −= − − − . 

AJL name ( )B
y y TG G −−  the vertical potential redistributive effect: it loses part of its 

potentiality whenever either the within-group inequality index W
TyG −  or the group 

overlapping index ( )AJL t B W
y T y T y T y TR G G G G− − − −= = − + APKR=  becomes different from 

zero after taxation. 

When close equals are considered 

However, as observed before, this decomposition can be correctly applied provided that 

each group is composed by subjects with the same pre-tax income and taxation does not 

modify either the ranking among group averages or the within-group rankings (van de 

Ven, Creedy and Lambert, 2001; Vernizzi, 2006; Urban and Lambert, 2008). 

                                                 
4 In UL notation 1D  is the concentration index for after-tax incomes, when ordered according to the before taxation ranking. 1D  

may be different from 4
B W
y T y TD G G− −= +  and, in general, it is. In our notation 1D  is y TD − . 
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In the real world, even for gross incomes the within-group Gini index, W
yG  is generally 

different from zero, as only groups with close pre-tax incomes can be considered. As a 

consequence, only bandwidths of income containing close-equals must be chosen. 

More in general, neither post-tax grouping means maintaining the same order they had 

for the pre-tax income parade nor, that, within each group, the order of the incomes 

remains unchanged in the transition from the pre- to the post-tax incomes; in this case 

the residual of the RE decomposition is generally not equal to the APK index, which 

can be more generally defined as ( )APK B W
y T y T y T y T y TR G D G D D− − − − −= − = − + . y TD −  is 

the concentration index for the post-tax income parade when incomes are ranked 

according the pre-tax income non-decreasing ranking; B
y TD −  and W

y TD −  are, respectively, 

the between and the within group concentration indexes for post-tax income parade5. 

We can confirm these violations using a SHIW dataset, even if the magnitude of these 

“unpleasant” outcomes depends on the income range (bandwidth) chosen for each 

group. It is worth stressing that, according to empirical evidence6, the income 

bandwidth acts in opposite directions towards group reranking and within-group 

reranking: the larger the bandwidth is, the less probable is the former and the more 

frequent the latter. 

                                                 
5 B

y TD −  is defined as the concentration index when all incomes inside each group are substituted by the group income average and, 

moreover, groups are ordered according to pre-tax group averages. , ,
W
y T k y T k y T

k
D a D− − −= ∑ , where ,k y TD −  is the concentration 

index for the k-th group, when after tax incomes are ordered according to their pre-tax order,  and ,k y Ta −  is the product of the k-th 

group population share and post-tax income share. 

6 Lambert and Urban (2005), Vernizzi and Pellegrino (2007).  
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In addition, as the bandwidth increases, W
yG  can be no more close to zero, so that the 

redistributive effect can be no more evaluated as 

RE = ( )B W APK
y y T y TG G G R− −− − − ( )B B W APK

y y T y TG G G R− −= − − − ; it becomes more realistic 

to turn back to the more complete decomposition 

 ( ) ( )B B W W AJL VCL VCL AJL
y y T y T yRE G G G G R V H R− −= − − − − = − −   (1) 

having defined ( )VCL B B
y y TV G G −= −  and VCL W W

y T yH G G−= − . 

When using the above decomposition, one returns to the idea of constituting close-

equals groups, and focuses on the eventual enlargement of the within-group inequality 

( )W W VCL
y T yG G H− − =  term, together with the group overlapping term AJLR , to measure 

the loss in potential vertical redistribution effect which is measured by 

( )B B VCL
y y TG G V−− = . 

UL present other RE decompositions which hold also when groups do not include just 

equals or between or within groups rerankings introduced by taxation. Here we shall 

consider two of these decompositions, both of them apply the idea of smoothed taxation 

within group, which is introduced by UL in coherence with the principle of close equals 

groups: if groups contain close equals, their incomes should be taxed by a same tax rate, 

which can be properly estimated by the group average tax rate. After having applied a 

same tax rate to all incomes in group k, the Gini index for group k remains exactly equal 

to the pre-tax ,k yG ; however the smoothed within group Gini index , ,
SW
y T k y T k y

k
G a G− −= ∑  

is generally different from , ,
W
y k y k y

k

G a G=∑ , because in general , ,k y k y Ta a −≠ . 
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UL define AJL AJL AJLRE V H R= − − , where ( )AJL B SW
y y T y TV G G G− −= − +  and 

AJL W SW
y T y TH G G− −= − , so that: 

 ( ) ( )AJL AJL AJL B SW W SW AJL
y y T y T y T y TRE V H R G G G G G R− − − −= − − = − − − − −  (2) 

In expression (2) the potential vertical effect is measured by the difference between the 

pre-tax Gini index and the Gini index for an artificial post tax income parade, which, by 

constructions, excludes any group overlapping7. 

The “pure” horizontal inequity is measured by the enlargement of within group 

inequality, with respect to what would induce a smoothed taxation; group overlapping 

introduced by taxation, is measured by AJLR  as in equation (1). 

Both expressions (1) and (2) take into account only a part of horizontal inequity, 

eventually introduced by a taxation system, in fact the two RE decompositions do not 

consider within group and between group eventual rerankings. Actually, the Atkinson-

Plotnick-Kakwani index APKR  can be decomposed into three terms8: 

APK AJL EG WGR R R R= + + .  Together with the overlapping term AJLR  which has been 

already described, there are two further terms: the former, EGR , measures group 

                                                 
7 UL define AJLV  and AJLH  in an apparently different way. They define 5D  and 6D  as concentration indexes calculated on 

smoothed net incomes: the 5D  index ranks groups according to the same order they had before taxation, even if the taxation 

changed the income average order among groups; the 6D  index ranks groups that are ranked in a non decreasing order with respect 

to their post-tax average incomes. 3D  is the concentration index for (non-smoothed) after tax incomes, when groups follow the 

same order as before taxation, whilst within group incomes are in non decreasing order; then 6
AJL

yV G D= −  and 

4 6 3 5
AJLH D D D D= − = − . 

8 Lambert and Urban (2005). See also Vernizzi (2006) for analytical details. 
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averages reranking, whilst WGR  measures the reranking effect due to within groups 

reshuffling. More in detail 9 EG B B
y T y TR G D− −= −  and WG W W

y T y TR G D− −= − . 

The latter UL decomposition we consider is APKRE V H R= − − , where 

( )B SW
y y T y TV G D G− −= − +  and W SW

y T y TH D G− −= − .  Then:  

 ( ) ( )APK B SW W SW APK
y y T y T y T y TRE V H R G D G D G R− − − −= − − = − − − − −   (3) 

UL notice that decomposition (3) has the advantage of synthesizing the whole 

information set into one equation10. Table 1 summarizes Gini and concentration indexes 

definitions. 

 

TABLE 1 ABOUT HERE 

 

What decomposition is more suitable to analyze the redistributive effect and what 

bandwidth should be chosen is a problem not definitely solved: VCL suggest choosing a 

bandwidth where ( )VCLV RE  is maximum. This ratio may have more than one relative 

maximum and presents a layout which may be irregular, and somewhere quite irregular; 

as a consequence, identifying univocally the maximum is not so obvious. We got over 

this problem. 

 

 

                                                 
9 UL define 4 3

EGR D D= −  and  3 1
WGR D D= − . 

10 UL define V and H, respectively, as 5yV G D= −  and 1 5H D D= − . 
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3. A priori considerations on indexes behavior 
 
On a priori considerations, we can easily state the values that the indexes considered 

here  assume at bandwidth limits, that is either when bandwidth tends to zero or the 

maximum available range (Table 2). 

 

TABLE 2 ABOUT HERE 

 

When the bandwidth tends to zero11, VCL AJLV V RE= = , y y TV G D −= −  (the Reynolds-

Smolenky total redistribution index) and 0VCL AJLH H H= = = ; it follows that at 

bandwidth zero VCL AJLV V V≥ = . Conversely, when the bandwidth is maximum, that is 

equal to the observed income range, 0VCL AJLV V V= = = , VCL AJLH H RE= = −  and 

( )y y TH G D −= − − , so that when the bandwidth coincides with the maximum range 

VCL AJLH H H≤ = . In relation to the reranking effects, we have that when the bandwidth 

is zero 0AJL WGR R= =  and EG APKR R= , whilst for maximum bandwidth 

0AJL EGR R= =  and WG APKR R= . 

The difference AJLV V−  is equal to EGR , which being non-negative, implies V  to 

dominate AJLV . Less evident is the relation between VCLV  and AJLV  and, especially, that 

between V  and VCLV : in fact VCL AJL SW W
y T yV V G G−− = −  and 

( )VCL EG SW W
y T yV V R G G−− = − − . 

                                                 
11 A bandwidth equal or tending to zero implies that  each subject is considered by itself. 
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In order to throw some light on these relations, we recall how W
yG  and SW

y TG −  can be 

represented as weighted sums of average absolute differences, calculated within each 

group: 

 

( )
( )

( )
( )

2 2
, ,2 2

1

2 2
, ,2 2

1

1 1
2

1 11 1
1 2 1

K K
W
y i y i i i y i

i i
K K

SW
y T i y i i i i y i i

i i

G G n n
n n

G G n t t n
n t n t

µ
µ µ

µ
µ µ

=

−
=

= = ∆

= − = ∆ −
− −

∑ ∑

∑ ∑
 (4) 

where µ is the average income for all the subjects considered in the sample, n is the 

number of equivalent subjects in the sample, ni is the number of equivalent subjects 12 in 

group k, ti is the i-th group average tax rate, t  is average tax rate for the whole sample, 

( ) ( )2
, , , , ,

1
2

i ik k

i y i i h i s i s i h
s h s

n y y n n
= >

∆ = −∑∑ , ki being the number of cases registered in group i 

and ni,s the weight associated to income yi; within each group incomes are ranked in a 

non decreasing order. We can then write: 

( )
( )

( )
( )

2
,2

1

2
,2

1

1
1

1
2 1

K
SW W
y T y i y i i i

i

K

i y i i
i

G G G n t t
n t

t t n
n t

µ
µ

µ

−
=

=

− = − =
−

= ∆ −
−

∑

∑
   (5) 

Due to the asymmetry of income distributions, which makes bandwidths in the left tail 

more crowded than those in the right tail, in (5) positive ( )it t− ’s, are likely to receive 

a weight more than proportional than the negative ( )it t− ’s; if this is the case, VCLV  is 

expected to be not lower than AJLV 13. 

                                                 
12 A sum of equivalent subjects may be a non integer number. 

13 For instance when the income range is split into two groups, 2 1µ µ> , each having the same spread but not necessarily the same 

number of subjects, as ( ) ( )1 1 1 2 2 2 1 1 2 2 2 1,t t n t n n n t tµ µ µ µ= + + > , we can write 
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Turning to V  and VCLV , the sign of the difference VCLV V−  depends on the difference 

( )EG SW W
y T yR G G−− − , where SW W

y T yG G− −  is likely to be non negative, due to the above 

considerations, and EGR  is certainly non-negative. So, on a priori considerations, we 

can only conclude that for the bandwidth tending to zero VCLV V−  has APKR  as its limit, 

and for the bandwidth tending to the maximum range, VCLV V−  has zero as its limit. 

In relation to the horizontal loss measures, we observe that AJLH H−  is equal to WGR , 

the within group reranking index14, which is non-negative and that the difference 

between  VCLH H−  is equal to the sum of WGR  and ( )SW W
y T yG G− − : as the former is 

always non-negative and the latter is likely to be non negative, we expect that  

AJLH H≥ ; moreover given that ( )SW W
y T yG G− −  is non-negative, VCLH  should be not 

lower than AJLH , so that, summarizing, we expect that VCL AJLH H H≥ ≥ , where the 

second inequality always applies. 

4. Empirical analysis 
 
In this section we investigate by an empirical analysis how the group bandwidth 

influences the components of the redistribution index VCLV , VCLH  and AJLR  in equation 

                                                                                                                                               
( ){ } ( ) ( )2 2 2

1, 1 1 1 2, 2 2 21 1SW W
y T y y yG G n t G n t t G n t tµ µ µ−    − = − ⋅ − + − =   

( ) ( )( ){ } ( ) ( )2
1 1 2 2 1 1 2 2 1, 1 2 1 2, 2 2 11 y yn n n t n n G n t t G n t tµ µ µ µ µ   = − + ⋅ − − −    , which is greater than zero if 

( ) ( )1 2 2, 1,y yn n G G> . This is quite likely to be verified for an income asymmetric distribution. 

14 
( )

( ) ( )
( )

( )2 2
, ,2 2

1 1

1 11 1
2 1 1

K K
WG W W APK

y T y T i y T i y T i i i i i i i
i i

R G D G D n t R n t
n t n t

µ µ
µ µ− − − −

= =
= − = − − = −

− −
∑ ∑ , having defined with Ri

APK 

the Atkinson-Plotnick-Kakwani for the i-th group. 
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(1), AJLV  and AJLH  in equation (2), and V  in equation (3), together with the 

components of the Atkinson-Plotnick-Kakwani index APK AJL EG WGR R R R= + + . 

As stated before, our aim is to contribute to the discussion about the choice of a proper 

bandwidth: a proper bandwidth should catch as much as possible of the potential 

redistributive effect and, in the meanwhile, should get as close as possible measures 

from the three indexes VCLV , AJLV  and V . 

Our experiment was conducted on the basis of the Bank of Italy survey on household 

incomes and wealth (SHIW). The 2004 Italian SHIW dataset provides demographic and 

post-tax income microdata for a representative cross-section of 12,713 taxpayers and 

8,012 households (20,581 individuals). These data were used to obtain gross and net 

incomes according to the Italian Personal Income Tax (Pellegrino, 2007b). In order to 

deal in some way with two different data bases, the experiment was conducted with 

respect to both individual and family equivalent incomes. Equivalent incomes were 

obtained by dividing total family incomes by an equivalence scale; the scale here 

adopted is the Cutler scale which can be expressed as ( )h h hCS NA NC= + βα , having 

(arbitrarily) set 0.5=α  and 0.65=β . Ebert and Moyes (2000) observe that, in 

applying equivalence scales, the choice of the weight may be arbitrary: we consequently 

decided to weigh equivalent incomes by the lower and the upper boundaries, the former 

being 115 and the latter being the component number associated to each family16. Once 

the 2004 gross income parade was obtained, the 2006 and 2007 distributions were 

estimated considering the impact of the inflation rate (Pellegrino, 2007c). We found that 

                                                 
15 0α β= = . 

16 1α β= = . 
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the results are quite analogous for both weights equal to family components and for all 

weights equal to 1; moreover, the results are also very similar across different years, so 

that, for the sake of simplification, here we only report results referred to 2004, for 

individuals and for household equivalent incomes - weight 117. Figures 1a and 1b show 

the behavior of the three potential redistributive effects, VCLV , AJLV  and V, are plotted 

together with the constant line of the Reynolds-Smolenky total redistributive effect. 

The three indexes which measure the loss in horizontal equity, VCLH , AJLH  and H, are 

reported in Figures 2a and 2b, together with AJLR  and APKR , the latter being constant; 

all the above measures are expressed as percentages of the redistributive effect RE. 

The decomposition of APKR  is represented in Figures 3a and 3b: AJLR , EGR  and WGR  

are there expressed as percentages of APKR . 

As we noticed in the previous section, in correspondence of a zero bandwidth, both 

VCLV  and AJLV  are equal to RE, whilst V is equal to  y y TG D −− , the Reynolds-

Smolensky redistribution index, which is greater than RE.  For our minimum 

bandwidth, which is 10 euro, in Figure 1 VCLV  and AJLV  show a 0.7 % increase (0.8 % 

when dealing with family equivalent incomes: Figure 1b) with respect to the limit value 

for the bandwidth tending to zero, that is RE. In Figure 1 the two lines are not 

distinguishable and show a steep ascent up to bandwidths of  around 300 euro; then 

AJLV  leaves VCLV  and becomes indistinguishable from V  for bandwidths larger than 

400, when considering individuals, and larger than 550-600 when considering family 

equivalent incomes. V shows a decreasing trend; before becoming indistinguishable 

                                                 
17 Even if limited to VVCL, HVCL, RAJL, REG and RWG, Vernizzi and Pellegrino (2007) report all graphs for the three tax systems (2004, 

2004 and 2006), concerning both individuals and family equivalent incomes (weight 1 and weight equal to family components). 
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from AJLV  it dominates VCLV  and AJLV , then the V line crosses VCLV  and continues 

descending together with AJLV , leaving  the VCLV  line above. When the bandwidth is 

3,000 euro, for individuals the three lines are still greater than RE: VCLV  is almost 1.0% 

greater than  RE (1.2% families), AJLV  and V are only 0.4% greater than RE (0.6% 

families). 

Even if our analysis tries to focus on smaller bandwidths than UL do, our findings are 

substantially consistent with UL results; what appears to be different is that the lines 

presented by UL look much more regular than the ones represented here. Our lines are 

the more irregular the more they depart from the axes origin: the irregularities are more 

similar to irregular waves than to completely random white noises. 

More in detail, we observe that: 

(i) VCL AJLV V  as long as SW W
y T yG G− ; VCLV  becomes greater than AJLV  when SW

y TG −  

becomes sensibly greater than W
yG ;  

(ii) AJLV V  after EGR  becomes 0 ; as long as EGR  is not negligible AJLV V< ; 

(iii) VCLV V  for bandwidths where ( )EG SW W
y T yR G G− − ; VCLV V<  as long as 

( )EG SW W
y T yR G G−> −  and, conversely, VCLV V>  after EGR  becomes lower than 

( )SW W
y T yG G− − . 

 

FIGURES 1a-1a bis, 1b, 1b bis, 2a, 2b, ABOUT HERE 

 

Figures 2a and 2b represent the behavior of the three indexes which measure the 

horizontal effect, together with AJLR , the overlapping index, and APKR , the global 
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reranking index; as expected, the three indexes here considered, VCLH , AJLH  and H, 

assume a value which is very close to zero when the bandwidth is 10 euro. H presents 

few and insignificant positive values just for the tiniest bandwidth; then it starts a 

descending trend towards the limit value ( )y y TG D −− − . Conversely in correspondence 

of bandwidths of 10-3,000, considered here, VCLH  and AJLH  always present positive 

values. In particular when the bandwidth is 3,000 euro, VCLH  looks to be still 

increasing, whilst AJLH  has already started the descending trend. Similarly to VCLV , 

AJLV  and V, when bandwidths become large, VCLH , AJLH  and H present relatively 

strong irregularities. 

 

FIGURES 3a-3b ABOUT HERE 

 

The decomposition of APKR  is represented in Figures 3a and 3b: AJLR , EGR  and WGR  

are expressed as percentages of APKR . AJLR , which is zero both at bandwidth zero and 

at bandwidth maximum, shows a quite asymmetric line (as could be noted also from 

Figures 2a-2b, where it has just been rescaled by APKR RE ): for individuals, at 10 euro 

bandwidth it has already jumped up to 67% of APKR  (58% for families) and it reaches 

its maximum value, 88%, at the 100 euro bandwidth (86% for families)  then it begins 

to descend and at a 3,000 euro bandwidth it is roughly at 25% of APKR . EGR , which 

coincides with it is APKR  when the bandwidth is a point bandwidth, is 32,4% of APKR  at 

the 10 euro bandwidth (40% for families); it decreases quite soon and at a 300 euro 

bandwidth is already less than 1% of APKR . WGR appears to be a direct function of  the 

bandwidth, even if at decreasing rates: at a 3,000 bandwidth it is nearly 80% of APKR  
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(70% for families).  Similarly to what happens for the potential vertical indexes and the 

horizontal iniquity indexes, as bandwidths become larger, AJLR  and WGR  present 

relatively strong irregularities: this does not happen for EGR , due to the fact that this 

index is quite low for large bandwidths. 

Now let us investigate VCLH , AJLH  and H behavior; we can represent VCLH  as: 
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and AJLH  as: 
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For lower income groups, where the tax rate for each subject may be much lower than 

t , ,i y T−∆  may be greater than ( ), 1i y t∆ − , even if , ,i y T i y−∆ ≤ ∆  which may cause VCLH  

to result positive: in fact due to the asymmetry of income distributions, it is likely that 

lower income intervals contain more subjects than higher income groups do, so that the 

weighed sum represented in (6) may result to be positive even if , , ,i y T i y k−∆ ≤ ∆ ∀  . 

Then we can conclude that the VCLH  remains positive until bandwidths are large enough 

to make a sufficient number of ,i y T−∆ ’s – especially in the left hand side of the 
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distribution -  small enough to be less than their corresponding pre-tax ,i y∆ , multiplied 

by ( )1 t− 18.  

When dealing with incomes in the right distribution queue, the contrary happens, but, 

due to the distribution asymmetry, in the left hand tail income groups generally present 

weights greater than those in the right hand tail. 

Turning now to AJLH , as for lower incomes ( ) ( )1 1it t− ≥ − , in the left distribution 

queue, the relation ( ), , 1i y T i y it−∆ ≤ ∆ −  is more likely to be verified than the relation 

( ), , 1i y T i y t−∆ ≤ ∆ − . This consideration should explain why AJLH  starts decreasing 

earlier than VCLH . In any case it is excluded that AJLH  is positive when all groups’ post-

tax Gini indexes  are lower than the corresponding pre-tax ones. 

Let us now define ( ) ( )2
, , , , ,

1
2

i ik k
D
i y T i i h i s i s i h

s h s
n y y n n−

= >

∆ = −∑∑ , where ,i hy  is net income for 

subject h in group i, as incomes are here ordered according to pre-tax ranking; we can 

now express H as: 
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Looking at Figures 2a and 2b we realize that ( ), 1i y it∆ −  becomes greater than ,
D
i y T−∆  

even when bandwidths are not so large19, at least for the left distribution queue where 

                                                 
18 We observe also that HVCL may be positive even when all groups post-tax Gini indexes  are lower than the corresponding pre-tax 

ones, due two the different weight system: for lower incomes after tax weights should in fact be higher then the corresponding pre-

tax ones and the reverse should hold for higher incomes. 
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groups are more crowded, and, consequently, receive a weight which is heavier than in 

the right one. 

Table 3 reports the values for RE and APKR  decompositions, evaluated at bandwidths 

100, 200, 300, 400, 500, 600, 700 and 2,000; together with their standard errors 

obtained by 2,000 bootstrap replications. From the figures reported in the tables it 

results that the ratios between the indexes and their standard errors are generally quite 

high, except for those which concern ( )EGR R . The ratios ( ) { }EG EGR R SE R R range 

from 6.78 to 8.13 when the bandwidth is 100 euro, from 0.75 to 2.20 when the 

bandwidth is enlarged up to 700 euro, and they are not greater than 1.36 when the 

bandwidth is 2000. It is worth stressing that the 95% bootstrap percentiles are generally 

quite similar to those calculated assuming normality except for those related to 

( )EGR R ; this result is in line with UL findings. Their simulations lead to the 

conclusion that the distribution for EGR  is asymmetric while the distributions for the 

other indexes they consider are symmetric and, moreover, that the bootstrap estimated 

standard error for EGR  is almost twice than that of the true distribution. Then we can 

conclude that the point estimates for RE components should be quite reliable. The same 

should hold for WGR R  and AJLR R ; ( )EGR R  remain apart, perhaps due its relatively 

small magnitude, but not only for this reason: WGR R  is small when the bandwidth is 

100 euro, nevertheless it shows lower standard errors and bootstrap confidence intervals 

                                                                                                                                               
19 We observe that ,

D
i y T−∆ ,i y T−≤ ∆  (and, obviously, ,i y TD − ,i y TG −≤ ) which helps to explain why H becomes negative much 

before than HAJL. 
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more similar to those obtained by the normal distribution. Some caution should be 

adopted also for H when it assumes small absolute values. 

 

Tables 3 and 4 ABOUT HERE 

 

5. On determining an “optimal” bandwidth 
 
According to VCL decomposition, VVCL should eliminate both measurement errors and 

anomalous values by averaging within group incomes. VCL suggest choosing the 

bandwidth which maximizes the potential redistributive effect. On one side, it is true 

that the larger the groups, the more efficacious the smoothing action is; on the other 

side, the larger the groups, the less equals incomes are within groups. AJL methodology 

appears to be quite appealing for the horizontal effect measure adopted: as we stressed 

in the previous chapter, HAJL cannot result in being positive when all groups’ post-tax 

Gini indexes are lower than the corresponding pre-tax ones. It cannot be excluded at all 

for HVCL. H presents the undoubted advantage of being considered together with RAPK 

and so not only with RAJL. However its interpretation is not simple because negative 

values of H imply the horizontal effect is added and not subtracted to the overall 

redistributive effect. 

Looking either at Figures 1a and 1b in the present paper or the corresponding UL 

figures, we can see that, in correspondence of some bandwidths, the three potential 

redistributive effects are quite close, or even coincide. We would observe even closer 

values when the bandwidth tends to cover the whole income range: in this case, 
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however, as already noticed, the three indexes would tend to zero and would not capture 

any potential vertical redistribution at all. 

Figures 4a and 4b represent EGR  and ( )SW W
y T yG G− −  (as percentages of RE) plotted on the 

bandwidth; as observed in Chapter 3, EG AJLR V V= − , ( )SW W VCL AJL
y T yG G V V− − = −  and 

( ) ( )VCL EG SW W
y T yV V R G G−− = − − . The behavior shown by EGR  in our empirical analysis 

is confirmed also by UL analysis: when bandwidths become large, group average re-

rankings annihilate, sooner or later, depending on tax fairness: for individuals EGR  

becomes zero sooner than for families. If we go back to expression (5) we can see that 

( )SW W
y T yG G− −  is totally negligible for small bandwidths, where ( )2 2

in n  results to be 

quite small and their sum is much less than 1 when bandwidths are tiny and therefore 

little crowded. As bandwidths increase, a more than proportional increase in ( )2 2
in n  is 

not compensated by a convergence of the it  towards  their average t  and the difference 

between SW
y TG −  and W

yG  increases more than proportionally. Certainly, ( )SW W
y T yG G− −  is 

expected to decrease and to tend to zero as bandwidths enlarge, as 

lim limSW W
y T y yb MAX b MAX

G G G−→ →
= = . Moreover, as already observed, when their difference 

reaches zero, V, VVCL and VAJL too become very small and tend to zero. 

In the bandwidth range considered here, it follows that where ( )EG SW W
y T yR G G−= − , (i) V  

is equal to VCLV  and (ii), the greater of the two distances AJL EGV V R− = , 

( )VCL AJL SW W
y T yV V G G−− = −  is at its minimum value.  

For individuals, at bandwidth 280 where EGR  and SW W
y T yG G− −  are equal, they are 

0.005% of RE, which means 1.5% of the maximum value attained by EGR  (bandwidth 



 21

10 euro large) and 1% of the value attained by ( )SW W
y T yG G− −  at 3000 euro bandwidth; 

this explains why at a 280 euro bandwidth the three potential vertical redistribution 

indexes look to be equal. Slightly larger percentages hold for family equivalent incomes 

20:  

We can notice that the maximum for VAJL, the lowest among the three indexes, lies quite 

close to the point where VVCL crosses V. This implies that the bandwidth where 

EG SW W
y T yR G G−= −  is in a neighborhood of bandwidths where VAJL is maximum. Observe 

that AJL VCLV V≤  holds together with AJLV V≤ , so that VVCL crosses V when the former 

is still increasing and the latter is already decreasing. If this is true, the global maximum 

for VAJL should fall, as it actually does, between the bandwidth where the separation 

between VVCL and VAJL becomes evident, and the bandwidth where VVCL and V becomes 

no longer distinguishable. 

All these considerations seam to show that the real issue is to obtain a potential vertical 

measure which should be similar for each of the three indexes, without foregoing the 

VCL idea that this measure should be as great as possible. 

Then we could state the following criterion: the optimal bandwidth should be identified 

as follows: 

max ; ;
min

min ; ;

VCL AJL VCL AJL

VCL AJL

V V V V V V

V V V

  − − −  
 

    
   (9) 

                                                 
20 EGR and ( )SW W

y T yG G− −  represent 0.012% of RE at the 400 euro bandwidth; which means 2.3% of the maximum value attained 

by EGR  (bandwidth 10 euro large) and 2.1% of the maximum attained by ( )SW W
y T yG G− − (bandwidth 3000 euro). 
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The criterion stated at (9) should avoid choosing bandwidths where measures of the 

potential redistributive effects are lower than RE or quite null21. 

 

Figures 4a and 4b, 5a, 5b ABOUT HERE 

 

Figures 5a and 5b show the behavior of criterion (9) for the bandwidth range 10-3000. 

As we can see, the lines of (9) are quite stable if compared to the upper traces of EGR  

and ( )SW W
y T yG G− − , and they appear just as a re-scaling of the two distances. 

By observing the figures, we can conclude that the minimum for (9) is reached when 

( )EG SW W
y T yR G G−= − , at a 280 euro bandwidth for individuals and at a 380 euro 

bandwidth for equivalent family incomes. 

We expect that (9) should further increase as bandwidth enlarges; moreover, for 

bandwidths larger than those considered in this article, (9) can be approximated by 

( ) ( ) 1VCL AJL AJL VCL AJLV V V V V− = − = ( ) ( ) ( ){ } 1B B B B SW W
y y T y y T y T yG G G G G G− − −

 − − − − −  . 

For bandwidths up to 3000 euro, ( )SW W
y T yG G− −  is quite small with respect to 

( )B B
y y TG G −− , so that ( )VCL AJLV V  is quite close to 1; however, when bandwidths 

become larger and larger, ( )SW W
y T yG G− −  becomes relatively more important with respect 

to ( )B B
y y TG G −− , which causes ( )VCL AJLV V  to assume values sensibly greater than 1. 

                                                 
21 Mussini (2008) intensively investigates the behaviour of criterion (9) for the income earners in the Municipality of Milano. He 

explores for bandwidths up to ½ the maximum range for, confirming that the criterion (9) gives the minimum value where 

EGR = ( )SW W
y T yG G− − . 
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We add that in our empirical analysis, in the interval between 250-370 euro, VAJL 

oscillates between 99.97% and 99.99% of the Reynolds-Smolensky index, for 

individuals; for families the percentage ranges from  99.97% to 99.98% when the 

interval is 340-440 euro: in a neighbourhood of the optimal bandwidth the three indexes 

absorb most of the total redistributive effect. We conclude by observing that at the 

optimal bandwidth the horizontal loss measured by HVCL and HAJL is much lower than 

the loss due to overlapping among groups, measured by RAJL. 

6. Conclusions 
 
The original Aronson, Johnson and Lambert (1994) decomposition of the redistributive 

effect considers groups of exact equals in portioning the whole pre-tax income 

distribution and restricts the analysis to the special cases in which the group averages 

and the within group orderings maintain the same ranking as before taxation. This 

means that the AJL decomposition of the redistributive effect considers only the 

overlapping effect among groups of exact equals. 

As the following literature points out, exact equals are rare in real world data, so that 

only groups with close pre-tax incomes can be considered. If this is the case, also the 

reranking of the mean post-tax income among groups and the reranking within groups 

must be considered. The intensity of the three possible rerankings considered here 

varies according to the bandwidth defining the close equals. Then a problem arises: an 

optimal bandwidth must be chosen in order to decompose the redistributive effect 

properly into vertical, horizontal and reranking effects. 
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The choice of the optimal bandwidth is not obvious. Van de Ven, Creedy and Lambert 

(2001) identify the optimal bandwidth that should be used in decomposing the 

redistributive effect as the Aronson, Johnson and Lambert (1994) methodology 

suggests, without considering the different contribution of the reranking of the mean 

post-tax income among groups and the reranking within groups. They suggest choosing 

as the optimal bandwidth the one that maximizes the ratio between the potential vertical 

effect and the actual redistributive effect. As the empirical analysis shows, this ratio 

may have more than one relative maximum and present a layout that may be irregular, 

so that this condition is difficult to be applied in real data elaborations. 

Urban and Lambert (2008) solved this problem by identifying a set of possible 

decompositions of the redistributive effect. They also notice that when close pre-tax 

equals groups instead of exact pre-tax ones are considered, the residual component in 

the original Aronson, Johnson and Lambert (1994) model is not the Atkinson-Plotnick-

Kakwani index, but only one of its components, that is the one which measures group 

overlapping introduced by taxation. 

In this paper we have used this decomposition of the Atkinson-Plotnick-Kakwani index, 

and intensively looked at the empirical analysis in order to identify the relationships 

between the three main possible decompositions of the redistributive effect analyzed by 

Urban and Lambert (2008).  

We conclude that the optimal bandwidth should be chosen where the ratio between (a) 

the maximum distance among the considered possible definitions of potential vertical 

effect and (b) the minimum among the potential vertical effects is minimum. We find 

empirical evidence that in this bandwidth neighborhood the three measures also very 
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nearly converge and, moreover, absorb most of the Reynolds-Smolenky total 

redistribution measure.  
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Table 1: Summary of index definitions  

Groups are constituted by subjects belonging to a same pre-tax income bracket; income brackets are 
created by splitting the pre-tax non decreasing incomes parade into contiguous intervals 
characterized by a same income spread. Groups contains the same subjects both before and 
after taxation, whatever ordering criterion is adopted. Before taxation no overlapping exists 
by construction; taxation may result in group overlapping.  

yG  Gini index for pre-tax income parade.  

B
yG  between groups Gini index for pre-tax income parade: it is defined as the Gini index when 

all incomes inside each group are substituted by the group income average.  

W
yG  within groups Gini index for pre-tax income parade:  , ,

W
y k y k y

k

G a G=∑ , where ,k yG  is the 

Gini index for the k-th group and ,k ya  is the product of the k-th group  population share and 
pre-tax income share. 

y TG −  Gini index for post-tax income parade. 

B
y TG −  it is analogous to B

yG  for the post-tax income parade. 

W
y TG −  within groups Gini index for post-tax income parade:  , ,

W
y T k y T k y T

k

G a G− − −=∑ , where 

,k y TG −  is the post-tax Gini index for the k-th group and ,k y Ta −  is the product of the k-th 
group population share and post-tax income share. 

y TD −  concentration index for post-tax income parade when ordered according to the pre-tax order. 

B
y TD −  between groups concentration index for post-tax income parade: it is defined as the 

concentration index when all incomes inside each group are substituted by the group income 
average, moreover groups are ordered according to pre-tax group averages. 

W
y TD −  within groups concentration index for post-tax income parade:  

, ,
W
y T k y T k y T

k

D a D− − −=∑ ; ,k y TD −  is the concentration index for the k-th group, when the k-th 

group incomes are ordered according to the pretax within group order, and ,k y Ta −  is the 
product of the k-th group population share and post-tax income share. 

SW
y TG −  within groups Gini index for post-tax smoothed income parade. Smoothed taxation consists 

in taxing all income in a group by the group average tax rate.  , ,
SW
y T k y T k y T

k

G a G− − −=∑ , as 

the Gini index for the k-th group remains unchanged, when all group incomes are taxed by a 
same tax rate. 
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Table 2: Summary of equations and components 
VCL VCL AJLRE V H R= − −  

VCL B B
y y TV G G −= −  

VCL W W
y T yH G G−= −  

AJL t B W
y T y T y T y TR G G G G− − − −= = − −  

0 0 0
lim lim 0 e lim 0VCL VCL AJL

b b b
V RE H R

→ → →
= = =  

lim 0 lim e lim 0VCL VCL AJL

b MAX b MAX b MAX
V H RE R

→ → →
= = − =  

AJL AJL AJLRE V H R= − −  

( )

AJL B SW
y y T y T

VCL SW W
y T y

V G G G

V G G
− −

−

= − − =

= − −
 

AJL W SW
y T y TH G G− −= −  

0 0 0
lim lim 0 e lim 0AJL AJL AJL

b b b
V RE H R

→ → →
= = =  

lim 0 lim e lim 0AJL AJL AJL

b MAX b MAX b MAX
V H RE R

→ → →
= = − =  

APKRE V H R= − −            

( )
( ) ( )

B SW
y y T y T

AJL B B
y T y T

VCL SW W B B
y T y y T y T

V G D G

V G D

V G G G D

− −

− −

− − −

= − − =

= + − =

= − − + −

 

W SW
y T y TH D G− −= −  

0 0
lim e lim 0y y Tb b

V G D H−→ →
= − =  

lim 0 e lim y T yb MAX b MAX
V H D G−→ →
= = −  

( )
( )

APK AJL EG WG

EG B B
y T y T

WG W W
y T y T

R R R R

R G D

R G D
− −

− −

= + +

= −

= −

  

0 0 0
lim 0 lim e lim 0AJL EG APK WG

b b b
R R R R

→ → →
= = =  

lim 0 lim 0 e limAJL EG WG APK

b MAX b MAX b MAX
R R R R

→ → →
= = =  
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Figure 1a: V, VVCLand VAJL (%RE) - Individuals 
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Figure 1a bis: V, VVCLand VAJL (%RE) – Individuals (focus) 
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Figure 1b: V, VVCLand VAJL (%RE) – m(1) - Households  
m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1 

100.4

100.6

100.8

101

101.2

101.4

VV
C

L 
 V

  V
A

JL

0 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 2400 2600 2800 3000

Bandwidth

VVCL V
VAJL

 
 

Figure 1b bis: V, VVCLand VAJL (%RE) – m(1) - Households (focus) 
m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1 
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Figure 2a: H, HVCLand HAJL with RAJL and RAPK (%RE) - Individuals  
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Figure 2b: H, HVCLand HAJL with RAJL and RAPK (%RE) - m(1) - Households 
§ m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1. 
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Figure 3a: RAPK % decomposition - Individuals 
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Figure 3b: RAPK % decomposition – m(1) - Households 
§ m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1. 
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Table 3: RE decomposition – Individuals 
(bootstrap estimated standard errors in parentheses-2,000 replications) 

 

 

Component Bandwidths 
 100 300 400 500 600 700 2000 

14.3699 14.3699 14.3699 14.3699 14.3699 14.3699 14.3699 % RE/Gy (0.1266) (0.1266) (0.1266) (0.1266) (0.1266) (0.1266) (0.1266) 
101.0357 101.0835 101.0858 101.0890 101.0878 101.0855 101.0039 % ( )VCLV RE  
(0.0381) (0.0388) (0.0390) (0.0392) (0.0397) (0.0392) (0.0380) 
101.0847 101.0806 101.0762 101.0723 101.0634 101.0537 100.7546 % ( )V RE  
(0.0395) (0.0387) (0.0392) (0.0392) (0.0398) (0.0390) (0.0375) 
0.0759 0.2057 0.2621 0.3157 0.3628 0.4065 0.6713 % ( )VCLH RE  

(0.0025) (0.0064) (0.0083) (0.0098) (0.0115) (0.0126) (0.0232) 
0.0022 0.0063 0.0107 0.0146 0.0235 0.0332 0.3323 % ( )H RE  

(0.0012) (0.0031) (0.0042) (0.0052) (0.0061) (0.0070) (0.0222) 
0.9598 0.8778 0.8237 0.7733 0.7250 0.6789 0.3325 % ( )AJLR RE  

(0.0349) (0.0334) (0.0316) (0.0307) (0.0283) (0.0270) (0.0170) 
1.0871 1.0871 1.0871 1.0871 1.0871 1.0871 1.0871 % ( )APKR RE  

(0.0391) (0.0391) (0.0391) (0.0391) (0.0391) (0.0391) (0.0391) 
88.2865 80.7452 75.7697 71.1290 66.6890 62.4498 30.5890 % ( )AJL APKR R  
(0.5885) (0.4274) (0.4252) (0.4923) (0.5651) (0.5982) (0.8749) 
4.5962 0.2900 0.1338 0.1116 0.0669 0.0669 0.0000 % ( )EG APKR R  

(0.6003) (0.3100) (0.1310) (0.1115) (0.0549) (0.0495) (0.0146) 
7.1174 18.9648 24.0964 28.7595 33.2441 37.4833 69.4110 % ( )WG APKR R  

(0.1467) (0.3454) (0.4105) (0.5073) (0.5693) (0.6197) (0.9081) 
Source: Own elaborations.       

Table 4: RE decomposition – Households 
(bootstrap estimated standard errors in parentheses-2,000 replications) 

 

 

Component Bandwidths 
  100 300 400 500 600 700 2000 

13.9266 13.9266 13.9266 13.9266 13.9266 13.9266 13.9266 % RE/Gy (0.1910) (0.1910) (0.1910) (0.1910) (0.1910) (0.1910) (0.1910) 
101.2702 101.3349 101.3201 101.3300 101.3330 101.3351 101.2527 % ( )VCLV RE  
(0.0543) (0.0574) (0.0577) (0.0574) (0.0575) (0.0565) (0.0565) 
101.3468 101.3412 101.3217 101.3193 101.3129 101.3079 100.9817 % ( )V RE  
(0.0606) (0.0577) (0.0574) (0.0585) (0.0592) (0.0592) (0.0574) 
0.1001 0.2718 0.3422 0.4078 0.4664 0.5245 0.8316 % ( )VCLH RE  

(0.0040) (0.0106) (0.0136) (0.0158) (0.0188) (0.0202) (0.0335) 
0.0016 0.0072 0.0266 0.0290 0.0354 0.0405 0.3667 % ( )H RE  

(0.0017) (0.0044) (0.0061) (0.0074) (0.0091) (0.0101) (0.0313) 
1.1701 1.0622 0.9780 0.9217 0.8666 0.8106 0.4210 % ( )AJLR RE  

(0.0504) (0.0486) (0.0453) (0.0433) (0.0420) (0.0394) (0.0246) 
1.3486 1.3486 1.3486 1.3486 1.3486 1.3486 1.3486 % ( )APKR RE  

(0.0605) (0.0605) (0.0605) (0.0605) (0.0605) (0.0605) (0.0605) 
86.7615 78.7591 72.5153 68.3462 64.2561 60.1067 31.2191 % ( )AJL APKR R  
(0.7555) (0.5072) (0.5598) (0.6584) (0.6792) (0.7271) (1.0030) 
5.7103 1.0275 0.9484 0.5928 0.4347 0.4742 0.0395 % ( )EG APKR R  

(0.8019) (0.3685) (0.3194) (0.2602) (0.1983) (0.2152) (0.0384) 
7.5282 20.2134 26.5363 31.0611 35.3092 39.4191 68.7414 % ( )WG APKR R  

(0.1758) (0.4143) (0.5429) (0.6269) (0.6628) (0.7425) (0.9690) 
Source: Own elaborations.       
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Figure 4a: REG and SW W
y T yG G− −  as percentage of RE – Individuals 
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Figure 4b: REG and SW W

y T yG G− −  as percentage of RE – m(1) - Households 
§ m(1) means Cutler scale α=0.50 β=0.65 and family weight = 1. 
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Figure 5a: The minimization criterion – Individuals 
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Figure 5b: The minimization criterion – m(1) - Households 
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