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WHAT’S SO SPECIAL ABOUT EUCLIDEAN DISTANCE?

A CHARACTERIZATION WITH APPLICATIONS TO
MOBILITY AND SPATIAL VOTING

MARCELLO D’AGOSTINO AND VALENTINO DARDANONI

Abstract. In this paper we provide an application-oriented characterization of a
class of distance measures monotonically related to the Euclidean distance in terms
of some general properties of distance functions between real-valued vectors. Our
analysis hinges upon two fundamental properties of distance measures that we call
“value-sensitivity” and “order-sensitivity”. We show how these two general prop-
erties, combined with natural monotonicity considerations, lead to characterization
results that single out several versions of Euclidean distance from the wide class of
separable distance measures. We then discuss and motivate our results in two differ-
ent and apparently unrelated application areas — mobility measurement and spatial
voting theory — and propose our characterization as a test for deciding whether
Euclidean distance (or some suitable variant) should be used in your favourite appli-
cation context.

JEL Classification Numbers: C0, C53, D63, D72.

Keywords: Euclidean Distance, Axiomatic Method, Mobility Measurement, Spatial
Voting.

1. Introduction

The problem of measuring the distance between real-valued vectors arises in most
areas of scientific research. In particular, variants of the familiar Euclidean distance
play a prominent role in many important application contexts not only in economics,
statistics, political science and decision theory, but in such diverse fields as DNA se-
quencing, cryptography, image recognition, and so on. But what’s so special about
Euclidean distance? How can we judge the appropriateness of adopting this conven-
tional distance measure in some specific application context? In what contexts are we
forced to use it (or some monotonic transformation of its) as the appropriate distance
measure?

In this paper we provide an application-oriented characterization of a class of func-
tions monotonically related to the Euclidean distance in terms of five general properies
which are intuitively (and perhaps empirically) testable. We show that Euclidean dis-
tance is (up to a monotonic transformation) the only function that satisfies them all.
We also show that, by replacing some of these five properties with suitable variants,
one obtains a similar characterization of an averaged version of the Euclidean distance

Date: 1 November 2007.
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2 MARCELLO D’AGOSTINO AND VALENTINO DARDANONI

which we call Averaged Euclidean Distance, and unique characterizations of closely
related distance measures that we call Generalized Euclidean Distance and Averaged
Generalized Euclidean Distance:

dn(x,y) =
√∑n

i=1(xi − yi)2 (ED)

dn(x,y) =
√

1
n

∑n
i=1(xi − yi)2 (AED)

dn(x,y) =
√∑n

i=1(g(xi)− g(yi))2 (GED)

dn(x,y) =
√

1
n

∑n
i=1(g(xi)− g(yi))2 (AGED)

where g is a continuous and increasing function. Our results may then be helpful in
testing — intuitively or empirically — whether one or the other of these metrics fits a
specific application and should, therefore, be preferred to alternative measures.

Our use of the expression “distance function”, throughout the paper, is informal.
In several application contexts a variety of functions which do not fully satisfy the
standard textbook definition have been taken into consideration and are regarded as
intuitively measuring some sort of distance. So, in this paper we are not committing to
any specific definition, let alone to the standard one. By “distance measure” we shall
refer to any continuous function of two real-valued vectors (of the same finite size)
which can be intuitively considered as measuring their distance, even if in some cases,
such a function may not satisfy one or the other property of the standard definition.
Thus, we shall speak of a “distance measure over Dn” to mean simply a continuous
function dn : Dn × Dn 7→ R+ for some suitable interval D ⊆ R.

Our characterization hinges upon two fundamental properties that a distance mea-
sure between two real-valued vectors may satisfy. These properties deal with two basic
ways in which the distance between vectors x and y may intuitively increase/decrease,
namely: (a) by changing the value of one component of one of the two vectors, leaving
everything else unchanged; (b) by “swapping” the values of two elements in one of the
two vectors, leaving everything else unchanged.

More precisely,

• we say that a distance measure dn : Dn × Dn 7→ R+ (for some interval D ⊆ R)
is value-sensitive if, for any x,y,y′ ∈ Dn such that |xj − yj| < |xj − y′j| and
yi = y′i for i 6= j, we have

dn(x,y) < dn(x,y′);

• let σij(u) denote the vector obtained from u by “swapping” the values of ui and
uj; a distance measure dn is called order-sensitive if, for all x,y ∈ Dn, whenever
(xi − xj)(yi − yj) > 0 we have

dn(x,y) < dn(x, σij(y)).
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Figure 1. Order-sensitive and value-sensitive measures

While value-sensitivity requires that the distance between two vectors should be a
monotonic function of the absolute difference between their corresponding coordinates,
order-sensitivity requires that it should depend on the order association between the
two vectors. Suppose that, for some i and j, there is a positive order association
between the corresponding coordinates, that is (xi − xj)(yi − yj) > 0. In this case a
swap between yi and yj (or between xi and xj) is order-reversing, since it turns the
positive association into a negative one.1 Order-sensitivity requires that such swaps
always increase the distance between the vectors under consideration.

Clearly, not all commonly used distance measures are order-sensitive. In Figure 1(a)
on p. 3, it can be immediately verified that the so-called city-block distance dn(u,v) =
Σn

i=1|ui − vi| declares x as equally close to y and σ12(y). On the other hand, typical
order-sensitive measures, such as the Spearman and Kendall coefficients as well as any
other measure based on ranks, are not value-sensitive and, for instance, would declare
x equally close to y and y′ in Figure 1(b).

Although value-sensitivity and order-sensitivity rely on different intuitions about
how the distance between two vectors may change, they are by no means incompatible
properties. Each member of the commonly used Minkowsky class of distance measures

dn(u,v) =
(
Σn

i=1(ui−vi)
p
)1/p

(also known as the power metric) is both value and order
sensitive whenever p > 1.

In their well-known [TK70], Tverski and Krantz discuss axiomatic characterizations
of various generalizations of the power metric from the point of view of measurement
theory. In a different context, motivated by mobility measurement, Fields and Ok
([FO96]) and Mitra and Ok ([MO98]) also provide related characterizations of the
Minkowski class. However, since there are infinitely many elements in the Minkowsky

1Such order-reversing swaps are discussed in mathematical statistics [Tch80], economics [ET80],
and mobility measurement [Atk83, Dar93].
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class, such characterizations leave entirely open the choice of the specific metric which is
appropriate in each given context, as well as the characterizing properties of the chosen
metric. So, their analyses do not, and cannot, assign any special role to the property
that we have called “order-sensitivity”, for the good reason that the Minkowski class
includes, as a special case, the city-block distance which is not order-sensitive. One
aim of this paper is to provide a sharper analysis, by identifying a set of properties that
allow us to single out Euclidean distance, in one or the other version, from the wide
class of separable distance measures.2 A crucial step in this analysis is the recognition
that, unlike any other Minkowsky metric, Euclidean distance is order-sensitive in a
way which is monotonically related to the distance between the swapped values. This
distinctive property plays a crucial role in a variety of applications and can be identified
as what makes Euclidean distance so “special”.

In Section 2 we present three properties (Properties 3, 4 and 5) that refine, via nat-
ural monotonicity considerations, the general definitions of value-sensitive and order-
sensitive distance measures informally introduced above. We call them “monotonicity
properties”. We also introduce two invariance properties, Permutation Invariance and
Extension Invariance (Properties 1 and 2). We also consider alternative versions of
Properties 2 and 3 which may turn out to be more adequate for some applications. We
then show, in Section 3, that Euclidean Distance is the only distance measure which
satisfies the monotonicity properties, and the invariance properties (Theorem 1). We
also show that Averaged Euclidean distance is the only distance measure that satisfies
the monotonicity properties, Permutation Invariance and an alternative to Extension
Invariance, called Replication invariance (Theorem 2). Finally, we show that by re-
placing Property 3 with a suitable alternative version in the first two theorems, one
obtains a characterization of Generalized Euclidean Distance and Averaged Generalized
Euclidean Distance (Theorem 3).

As a vehicle to appreciate the applicative potential of our results, we shall discuss, in
Section 4, two case-studies from very different areas: social mobility measurement and
spatial voting theory.3 In case-study 1, we make a critical analysis of the characterizing
properties of Euclidean Distance in the context of mobility measurement, which leads
to the rejection of two of these properties on intuitive grounds. Our analysis suggests
that Averaged Generalized Euclidean Distance (characterized in Theorem 3) may be
more suitable for this kind of application. In case-study 2, the intuitive rejection of
two characterizing properties of Euclidean Distance in the context of spatial voting
theory is addressed via a different approach. This consists in showing how the intu-
itively judged distance between candidates, which is prima facie incompatible with a
Euclidean metric, can be expressed in terms of a restricted “canonical” model for which
all the characterizing properties of Euclidean Distance are satisfied.

2A similar sharper analysis, but leading to a characterization of the city-block distance, is provided
by Fields and Ok in [FO96].

3For surveys on social mobility measurement see Maasoumi [Maa98] and Fields and Ok [FO99a].
For an introduction to the spatial theory of voting, see Hinich and Munger [HM70]; for a general
advanced treatment of voting theory, Austeen-Smith and Banks [ASB99].
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Potential applications of the characterization results presented in this paper, on the
other hand, are by no means restricted to the ones discussed in these two case-studies,
but extend to many other interesting problems that can be naturally interpreted in
terms of choosing a suitable distance function between real-valued vectors.4

2. Properties

As mentioned in the Introduction, we shall speak of a “distance measure over Dn”
to mean simply a continuous function dn : Dn × Dn 7→ R+ for some suitable interval
D ⊆ R. In particular, we shall restrict our attention to three typical cases: (i) D = [0, a]
for some a ∈ R+ such that 1 ≤ a; (ii) D = R+; (iii) D = R. We notice that in such
cases, given any two x, y ∈ D, their absolute difference |x − y| ∈ D+; this restriction
will simplify the analysis and the notation used in this paper.

In what follows we shall use the lightface letters a, b, c, d, etc. to denote arbitrary real
numbers and the boldface letters x,y,w, etc. to denote arbitrary vectors. The vector
whose only element is the real number a will be denoted simply by “a”. We shall write
[x,y] for the concatenation of the two vectors x and y.5

2.1. Invariance Properties. The first property of this group requires dn to be in-
variant under uniform permutations of both its arguments:

Property 1 (Permutation Invariance). For all x,y ∈ Dn

dn(x,y) = dn(π(x), π(y))

for every permutation π.

The second property relates the distance between two n-dimensional vectors to the
distance between higher-dimensional “conservative extensions”. It requires that, if
both vectors are extended by concatenating each of them with the same vector, their
distance is left unaltered.

Property 2 (Extension Invariance). For all m, n ∈ N, all x,y ∈ Dm and all z ∈ Dn,

dm(x,y) = dm+n([x, z], [y, z]).

4The linear regression model, for instance, is without doubts the workhorse of theoretical and
applied econometrics. Given an n-sized vector y (“regressand”) and k n-sized vectors x1, . . . ,xk

(“regressors”) which are collected into an n× k matrix X, the linear regression model deals with how
to find the point in the linear space spanned by the columns of X which is closest to y. Thus, the
problem is to find a k-sized vector β (“regression coefficient”) which minimizes the distance between
y and Xβ. The most common method for solving this problem is of course the OLS, which implies
that Euclidean distance is the chosen distance concept.

In other applications, distance measures between real-valued vectors are employed to evaluate the
amount of “similarity” between two objects, each of which is decomposed into a fixed number of
components. (Dis)similarity is then modelled as a suitable metric in the resulting feature space. For
a critical discussion of such metric models in the investigation of human similarity judgements and an
alternative proposal in terms of fuzzy set theory, see [SJ99].

5Since conventionally vectors in Dn are columns, by [x,y] formally we mean [xT ,yT ]T .
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This Property may appear intuitively sound in some application contexts but not in
others, for instance when we are interested in a notion of averaged distance. For an
alternative property which is appropriate in such contexts see Section 2.3 below.

2.2. Monotonicity Properties. The first two properties of this group articulate the
value-sensitivity property informally discussed in Section 1 and refine it via monotonic-
ity considerations. They are both rather natural assumptions to make, and similar
properties arise in several characterization results, including those mentioned in the
introduction, in a variety of fields.

Property 3 (One-dimensional value-sensitivity). For all a, b ∈ D, d1(a, b) = G(|a−b|)
for some continuous and strictly increasing function G : D+ 7→ R+ such that G(0) = 0.

This property makes one-dimensional distance depend monotonically on the absolute
difference between the values of their single coordinate (G(0) = 0 is a harmless normal-
ization requirement) and leaves entirely open the problem of how to measure higher-
dimensional distance.6 Property 3 is closely related to the one called “intradimensional
subtractivity” in [TK70]. In fact, the latter corresponds to Property 3∗ presented in
Section 2.3.

The second property requires that the distance between two vectors is monotonically
consistent with the distance between their subvectors:

Property 4 (Subvector Consistency). For all k, j and whenever x,y,x′,y′ ∈ Dk,
u,v,u′,v′ ∈ Dj,

dk(x,y) > dk(x
′,y′) and dj(u,v) = dj(u

′,v′) =⇒
=⇒ dk+j([x,u], [y,v]) > dk+j([x

′,u′], [y′,v′]).

A similar axiom is commonly used in the literature on income inequality [Sho88],
poverty [FS91] and mobility measurement [FO99b],7 and implies (as shown in the proof
of Theorem 1 provided in the Appendix, see also [FS91]) the fundamental independence
assumption which plays a crucial role in the theory of additive conjoint measurement
([Deb60]). Tverski and Krantz show how to derive the latter from three more primitive
axioms (see Theorem 1 in [TK70]).

The third property of this group is best understood in connection with the order-
sensitivity property discussed in Section 1. It can be interpreted as requiring that the
increase in the distance between two vectors caused by any “order-reversing swap”
depends monotonically on the distance, in each vector, between the components that
are involved in the swap:8

6Notice that it implies that one-dimensional distance satisfies the conditions for a “semimetric”,
namely non-negativity (d1(a, b) ≥ 0), symmetry (d1(a, b) = d1(b, a)), and identity of indiscernibles
(d1(a, b) = 0 if and only if a = b).

7Though such axioms are widely accepted in these contexts, for a critical discussion see Foster and
Sen [FS97].

8Recall that we denote by σij(y) the vector obtained from y by “swapping” yi and yj , i.e. the
vector y′ such that: (i) y′

k = yk for all k 6= i, j, (ii) y′
i = yj , and (iii) y′

j = yi. Observe that, strictly
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Property 5 (Monotonic Order-Sensitivity). For all n ≥ 4, for all x,y ∈ Dn and all
i, j, k, m ∈ {1, . . . , n}, if

• (xi − xj)(yi − yj) > 0
• (xk − xm)(yk − ym) > 0
• d1(xi, xj) ≤ d1(xk, xm) and d1(yi, yj) ≤ d1(yk, ym),

then
dn(x, σij(y)) ≤ dn(x, σmk(y)).

In other words, the effect of an order-reversing swap in the y’s depends monotonically
both on the distance between the swapped y’s and on the distance between the cor-
responding x’s.9 As will be shown in the next section, this property provides a sharp
means to single out Euclidean distance (or some suitable variant of its) from the much
wider classes of separable distance measures. It can be verified, for instance, that while
all the Minkowski distance measures with p > 1 are order-sensitive, none of them is
monotonically order-sensitive except for the case of p = 2.

2.3. Variants. Extension Invariance (Property 2 above) may be considered inappro-
priate in some application contexts—such as social mobility comparisons—where we
are interested in a notion of average distance. In this kind of applications one may
want to consider, instead of Property 2, a standard “replication” property:

Property 2∗ (Replication Invariance). dk(x,y) = dnk([

n︷ ︸︸ ︷
x, · · · ,x], [

n︷ ︸︸ ︷
y, · · · ,y]) for every

x,y ∈ Dk and every n ∈ N, where [

n︷ ︸︸ ︷
u, · · · ,u] denotes the result of concatenating the

vector u with itself n times.

As will be shown in Section 4, in some application contexts, One-dimensional Value-
Sensitivity (Property 3 above) may also be rejected, on intuitive or empirical grounds,
in favour of the following variant:

Property 3∗ (Generalized value-sensitivity). For all a, b ∈ D, d1(a, b) = |g(a)− g(b)|,
for some continuous and strictly increasing function g : R+ 7→ D,

the nature of the function g depending on the application. In Section 4.1, for instance,
we argue that this variant should be preferred in the context of social mobility mea-
surement, where g is interpreted as an “economic status” function. In the Appendix we
show how this property can be derived from more primitive ones which have a natural
interpretation in the context of mobility measurement. [TK70] discuss this property
in connection with psychological applications and also present (Theorem 1) a different

speaking, this Property does not imply, by itself, that the distance measure be order-sensitive in
the sense explained in the Introduction, that is, it does not imply that any order-reversing swap be
distance-increasing. However, it does so in conjunction with the other properties, as shown in the
Appendix, section 6.2.

9The latter must also be taken into consideration, since the pair of vectors (x, σij(y)) could be seen
as obtained from the pair (σij(x), σij(y)) by an order-reversing swap in σij(x).
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derivation of it from axioms expressed in terms of a “betweennes” relation. Observe
also that if Property 3 is replaced by Property 3∗, Property 5 needs to be reinterpreted
by noticing that the distance between the swapped values must be measured taking
into account the function g.

3. Characterizations

Theorem 1. A distance measure dn satisfies Properties 1, 2, 3, 4, 5, if and only if for
all n and all x,y ∈ Dn:

dn(x,y) = H
[ n∑

i=1

(xi − yi)
2
]

for some continuous and strictly increasing function H : R+ 7→ R+ such that H(0) = 0.

The proof of this theorem is contained in the Appendix, and is based on the fact that
Properties 1, 2, 3 and 4 induce a separable structure, while the addition of Property 5
induces the quadratic functional form.

Notice that the monotone function H emerging in Theorem 1 is related to the choice
of an appropriate function G in Property 3, since clearly H(t) = G(

√
(t)). For example:

(i) the standard Euclidean Distance emerges from our properties simply by letting G
be the identity function; (ii) the Squared Euclidean Distance is obtained when G is
the quadratic function.

Replacing Property 2 with Property 2∗ suffices to characterize (still up to a monotonic
transformation) AED :

Theorem 2. A distance measure dn satisfies Properties 1, 2∗, 3, 4, 5, if and only if
for all n ∈ N and all x,y ∈ Dn,

dn(x,y) = H
[ 1

n

n∑
i=1

(xi − yi)
2
]

for some continuous and strictly increasing function H : R+ 7→ R+ with H(0) = 0.

When Property 3 is replaced by its variant 3∗, one obtains a characterization of GED
and AGED :

Theorem 3.

1. A distance measure dn satisfies Properties 1, 2, 3∗, 4, 5, if and only if

dn(x,y) =

√√√√ n∑
i=1

(g(xi)− g(yi))2.



WHAT’S SO SPECIAL ABOUT EUCLIDEAN DISTANCE 9

2. If Property 2 is replaced by Property 2∗, then:

dn(x,y) =

√√√√ 1

n

n∑
i=1

(g(xi)− g(yi))2.

It may be worth noticing that replacing Property 3 with Property 3∗ forces the mono-
tonic function H in Theorems 1 and 2 to be equal to the identity function.

Theorems 1, 2 and 3 can be directly applied to justify the use of one or the other ver-
sion of Euclidean distance, in all application contexts in which the relevant properties
are satisfied. Typically, an application context C is represented by a pair (S, d) where
S is the data space and d is some intended intuitive distance measure over S, i.e. some
distance measure partially specified by a set of intuitive comparative judgments of the
form “x is closer to y than z”. The problem is determining the functional form that d
must have in order to comply with such intuitive judgments. If the characterizing prop-
erties are satisfied by the intuitive judgments which can be obtained in the application
context C – and may sometimes be revealed experimentally – then our theorems dic-
tate (up to a monotonic transformation) the functional form of the distance measure:
Euclidean Distance (Theorem 1), Averaged Euclidean Distance (Theorem 2), Gener-
alized Euclidean Distance (Theorem 3.1) or Averaged Generalized Euclidean Distance
(Theorem 3.2).

4. Applications: two case-studies

4.1. Case study 1: social mobility measurement. When discussing mobility is-
sues, a basic distinction is usually made between intergenerational and intragenera-
tional mobility. The first concept concerns the study of how the distribution of some
relevant measure of individual status changes between different generations in a given
society. Alternatively, intragenerational mobility studies how the distribution of indi-
vidual status changes among a group of individuals over a given period of their lifetime.
In general, the simplest framework to capture either of these aspects is to consider how,
in a society of n individuals, a vector x is transformed into another vector y, where
the i-th element xi denotes the value of a relevant indicator of the social and economic
status of individual i, and yi denotes its value in the next generation (intergenerational
case) or in the next time period (intragenerational case). Typical variables employed
in most mobility studies for measuring socioeconomic status are income, wage, con-
sumption, education, and occupational prestige. Focusing on intergenerational income
mobility, a social mobility index is then a function from Rn

+ × Rn
+ 7→ R+ which can be

naturally interpreted as a distance function between fathers’ and sons’ incomes. So,
in this application context the data space is Rn

+ × Rn
+, where each vector represents

social status of individuals in a society, and the intended intuitive distance d is some
distance measure that complies with intuitive mobility comparisons.

In the context of mobility measurement, Property 1 seem unexceptionable. Prop-
erty 4 is also almost invariably assumed in the mobility measurement literature where
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it is known as “subgroup consistency”. On the other hand, Property 2 is quite inappro-
priate if one believes that social mobility in a society should be measured in per-capita
terms. So, Property 2 can be dropped and replaced by the Replication Invariance prop-
erty (Property 2∗) which led us to Theorem 2.10 We will then consider the per-capita
Euclidean distance as a good candidate for the sound distance measure in the social
mobility context, and we will focus then on the remaining properties, namely 3 and 5.

If the domain of the mobility index are dollar-incomes, as often assumed, it may be
unreasonable to postulate that a father-son movement, say, between $100 and $110 has
the same level of mobility than a movement between $1000 and $1010, as implied by
Property 3. If one interprets a social mobility index as measuring the distance between
the economic status of two generations, this kind of objection would lead to rejecting the
identification of economic status with dollar-income, and suggests replacing Property
3 with an analogous property which is not subject to this criticism. As a replacement
of Property 3 consider then Property 3∗, where g is interpreted as an appropriate
function measuring “economic status” whose form is application-dependent (but see
below for a brief discussion). Notice that this property implies the symmetry of upward
and downward mobility. As remarked by Fields and Ok [FO99b], this symmetry is
unexceptionable if one does not distinguish between “good” and “bad” movements
of income, that is, one is not motivated by welfaristic concerns. Then, Theorem 3,
implies that AGED may be a good choice in this application context. Compare this
distance measure with the “city-block” and Minkowsky distance measures applied to
dollar-incomes, and the “city-block” measure applied to log-dollar incomes, proposed
in the seminal characterizations of mobility indices ([FO96], [MO98] and [FO99b]).

As for Property 5, observe that once Property 3 has been replaced by Property 3∗,
its interpretation inherits the consideration of economic status which is incorporated
into the latter. As a consequence, the distance between the swapped values is measured
taking into account the effect of the status function g. In particular, observe that, if g
is a concave function (such as, for example the log) the distance between two swapped
values in the application of Property 5 will be smaller for incomes of high range even
when the difference between their absolute values is the same. Having clarified this,
Property 5 seems a natural monotonic extension of the order-reversing swap property
much discussed in the mobility literature.

Applications of this theorem depend on the choice of an appropriate status function
g. Some may argue that a good choice would be, for example, to take g as the log
function, so that an income movement from $1000 to $2000 would have the same
mobility effect as a movement from $100 to $200. In general, the most appropriate
choice of g depends on the application context and must be justified independently.
Property 3∗ (and, as a consequence, Property 5), can therefore be seen as a general

10On the other hand, the Replication Invariance Property too may be criticized in mobility ap-
plications. For example, one may legitimately perceive less mobility in a society with two families
with incomes, say, (1, 2) and (2, 1) than in a society which replicates these two families a million
times. If this view is strongly held, our theorem implies that averaged euclidean distance is not a
good candidate for mobility measurement.
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constraint on this choice.11 In the Appendix we discuss how Property 3∗ can be derived
by three more primitive properties which seem rather natural in the context of mobility
measurement.

4.2. Case study 2: multidimensional spatial voting. The standard univariate
spatial theory of voting assumes the existence of a policy space P which is typically
an interval [0, a], such that different alternatives can be represented as points in P .
A multidimensional policy space can then be represented as the Cartesian product
Pn, such that each issue has a well-defined unit of measurement which is shared by all
voters, and the different alternatives over which voters are assumed to vote are elements
of Pn (real-valued n-dimensional vectors). A voter’s preferences are then characterized
by an ideal point in Pn and a distance measure on Pn.

Given an ideal point x ∈ Pn, the Euclidean distance induces a preference ordering
�x on Pn such that

y �x z ⇔ −
n∑

i=1

(xi − yi)
2 ≥ −

n∑
i=1

(xi − zi)
2

that is, the individual will vote for y whenever y is “closer” to her ideal point x than
z. For illustration, in the two-dimensional case the ordering can be represented by the
utility function Ux(y) = −(x1−y1)

2− (x2−y2)
2, and the indifference curves are circles

centered at (x1, x2). Theorem 1 shows that using Euclidean preferences in a given
context is equivalent to deeming its characterizing properties to comply with intuitive
judgments in that particular context. Here the data space is [0, a]n × [0, a]n, and an
intuitive distance function measures the “closeness” between two political platforms.

In multidimensional spatial voting, Property 3 is indeed uncontroversial since it
can be seen as the Blackian and Downsian starting point for any multidimensional
extension. Similarly, Properties 4 and 2 seem natural properties to impose in this
context. However, Property 5 and 1 appears to be intuitively sound only in situations
where different issues are regarded as equally important from the voter’s viewpoint.
Hence, while Theorem 1 justifies the use of Euclidean distance in all such restricted
situations, it can be argued that the restriction is quite unrealistic, since different issues
are often given different saliency.

When issues are assumed to have different saliency, the usual approach consists in
“weighting” different issues by means of a real number expressing the relative im-
portance assigned to them by an individual voter. Given a set of positive weights
w1, . . . , wn, weighted Euclidean preferences can then be represented by a utility func-
tion Ux,w(y) = −

∑n
i=1 wi(xi − yi)

2. It is easy to see that in the bidimensional case
indifference curves are ellipses centered at the ideal point x, parallel to the horizon-
tal/vertical axis depending on whether w1 is lower/greater than w2. It is clear that,
given an ideal point x, it is easy to construct examples where, say, y is preferred to z
by weighted Euclidean preferences but not by simple ones.

11Linking the concept of economic status to individual welfare, by interpreting g as an empirically
revealed utility function, could help this process.
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The intuition underlying the use of a weighted distance measure can be expressed
more precisely as follows. Let V be the set of all possible voters. If issues have different
saliency for different voters, the distance function changes from voter to voter, and so
we can denote by dv

n the distance function of voter v. Among all possible voters, there
are some, that we call the canonical voters, for whom all the different issues have the
same saliency. Let V0 be the subset of V consisting of the canonical voters. Using a
weighted distance measure (whatever it may be) means that the distance of a candidate
y from the ideal candidate x for a given voter v is equal to the distance between a(y)
and a(x) for a canonical voter u, where a is a standardization function that multiplies
every coordinate of the vector to which it applies for the “weight” assigned to the
corresponding issue.12 In this way the preferences of each non-canonical voter v can
be represented in terms of the preferences of a canonical voter u. So, by connecting
the preferences of non-canonical voters to those of a canonical voter, one may obtain
a precise mathematical expression which represents the former in terms of the latter.
The advantage of this approach is that the distance function of canonical voters may be
determined by means of some known characterization. To summarize, the assumption
underlying the use of weighted distance functions is the following

(1)
For all v ∈ V and all u ∈ V0, there are αv.1, . . . , αv.n ∈ R+

such that dv
n(x,y) = du

n(av(x), av(y)),

where av(z) = αv.1z1, . . . , αv.nzn.
Now, this assumption leaves open how the distance function of a canonical voter

should be appropriately determined. Why should weighted Euclidean distance be ap-
plied and not, for instance, weighted city-block distance? Weighting, as explained
before, is just a way of standardizing the elements of different policy spaces into ele-
ments of a reference policy space (that of a canonical voter) and tells us nothing about
the appropriate distance function for this reference space. Now, in the restricted do-
main of canonical voters we have already argued that the distance function satisfies
Property 1 and Property 5. Moreover, Properties 3, 2 and 4 are intuitively sound for all
dv

n, no matter whether v is canonical or not. Hence, we can assume that all properties
of Theorem 1 are satisfied by du

n, for any canonical voter u. Therefore:

C1: The distance function du
n of any canonical voter u satisfies 1, 2, 3, 4 and 5,

C2: For all v ∈ V and all u ∈ V0, there are αv.1, . . . , αv.n ∈ R+ such that dv
n(x,y) =

du
n(av(x), av(y)),

hold true if and only if, for every v ∈ V ,

dv
n(x,y) =

√√√√ n∑
i=1

wi(xi − yi)2,

with wi = α2
v.i.

12Such weights can be determined empirically by observing the indifference curves of each voter or
group of voters.
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For, by Theorem 1, du
n must be equal to the Euclidean distance for every canonical

voter u, and so, by C1 and C2 :

dv
n(x,y) = du

n

(
av(x), av(y)

)
=

√√√√ n∑
i=1

(
av,ixi − av,iyi

)2
.

Thus, dv
n must be equal to the weighted Euclidean distance, with the weight for issue i

given by α2
v.i.

We conclude this section by stressing that this result may be helpful in guiding
empirical research. For example [EMR88] consider weighted Euclidean distance and
weighted city-block distance to determine which is empirically closer to voting behavior.
By means of our characterization, empirical testing can be performed separately on each
of the characterizing properties of the distance function.

5. Conclusions

As should emerge from our discussion, the results presented in Section 3 may be
useful in understanding:

• whether some suitable monotonic transformation of Euclidean Distance, in one
of the variants investigated in this paper, naturally fits a given application
context, by checking whether its characterizing properties are satisfied in it
(case study 1);

• when the characterization results cannot be directly applied, how the original
application context can be reduced to a “canonical” one in which the properties
of some of the characterized distance measures are all satisfied (case study 2).

Our analysis suggests that some variant of the Euclidean distance is likely to be ap-
propriate in many contexts requiring a distance measure which is both monotonically
value-sensitive (as made precise by Properties 3/3∗ and 4) and monotonically order-
sensitive (as made precise by Property 5).

6. Appendix

6.1. Proof of Theorem 1. To prove the theorem, we first need the following

Lemma 1. A distance measure dn satisfies Properties 1, 2, 3, 4 if and only if there
exists a continuous and strictly increasing function f : R+ 7→ R+, with f(0) = 0, such
that for all n and all x,y ∈ Dn,

dn(x,y) = H
[ n∑

i=1

f(|xi − yi|)
]
,

for some continuous and strictly increasing function H : R+ 7→ R+ with H(0) = 0.
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6.1.1. Proof of Lemma 1. The “if” direction is left to the reader. For the “only if”
direction, let us suppose that a distance measure d satisfies Properties 1 and 2, 3,
4. First, observe that Property 4, given Permutation Invariance, is equivalent to the
following:

(2) dk+j([x,u], [y,v]) ≤ dk+j([x
′,u′], [y′,v′]) ⇐⇒ dk(x,y) ≤ dk(x

′,y′),

whenever dj(u,v) = dj(u
′,v′),

for all k, j, all x,y,x′,y′ ∈ Dk and all u,v,u′,v′ ∈ Dj.
It can be easily verified that Property 4 is implied by (2). To see the converse, notice

that under Permutation Invariance (2) is equivalent to:

(3) dk+j([x,u], [y,v]) ≤ dk+j([x
′,u], [y′,v]) ⇐⇒ dk(x,y) ≤ dk(x

′,y′),

for all k, j, all x,y,x′,y′ ∈ Dk and all u,v ∈ Dj. We then show that, under Permutation
Invariance, Property 4 implies (3), and therefore also (2).

Suppose first that dk+j([x,u], [y,v]) ≤ dk+j([x
′,u], [y′,v]); then by Property 4 and

contrapposition, we have that dk(x,y) ≤ dk(x
′,y′). On the other hand, suppose that

(i) dk(x,y) ≤ dk(x
′,y′) and (ii) dk+j([x,u], [y,v]) > dk+j([x

′,u], [y′,v]).

Now, if dk(x,y) < dk(x
′,y′), by Property 4, dk+j([x,u], [y,v]) < dk+j([x

′,u], [y′,v]),
against the assumption (ii). If dk(x,y) = dk(x

′,y′), it follows from (ii), by Property 4
again, that d2k+j([x,u,x′], [y,v,y′]) > d2k+j([x

′,u,x], [y′,v,y]) against Permutation
Invariance. Hence, if dk(x,y) ≤ dk(x

′,y′) it must hold true that dk+j([x,u], [y,v]) ≤
dk+j([x

′,u], [y′,v]).
Now, observe that Property 3 implies

(4) d1(a, b) = d1(|a− b|, 0).

It follows from (2) that, for all n ∈ N and all x,y,w, z ∈ Dn,

(5) d1(xi, yi) = d1(wi, zi) for all i = 1, · · · , n, =⇒ dn(x,y) = dn(w, z).

Therefore, given (4) above, we have that for all n and all x,y ∈ Dn,

(6) dn(x,y) = dn([|x1 − y1|, . . . , |xn − yn|], [0, . . . , 0]).

Let Mn : Dn
+ 7→ R be defined as follows

Mn(z) = dn([z1, . . . , zn], [0, . . . , 0]).

Now, since dn is assumed to be continuous, Mn must also be continuous. Moreover,
given Property 3, Mn must be strictly increasing in each argument. From (2) it also
follows that, for all u,u′ ∈ Dh

+ and v,v′ ∈ Dk
+, with h + k = n,

Mn([u,v]) ≥ Mn([u′,v]) ⇒ Mn([u,v′]) ≥ Mn([u′,v′]).

So, taking into account Property 1, one can apply Gorman’s separability Theorem
[Gor68], to show that, for all n ≥ 3, the function Mn must be separable,13 that is, there

13See [SS02] for a recent thorough discussion on separable preferences.
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must exist continuous and strictly increasing functions Fn : R 7→ R and fn : D+ 7→ R
such that:

Mn(z) = Fn

[ n∑
i=1

fn(zi)
]
.

Thus, by (6) and taking zi = |xi − yi|, we have that for all i = 1, . . . , n:

(7) dn(x,y) = Fn

[ n∑
i=1

fn(|xi − yi|)
]
.

We can assume, without loss of generality, that for all n, fn(0) = 0. For, whenever
fn(0) = c 6= 0, let hn : D+ 7→ R and Hn : R 7→ R be defined as follows:

hn(t) = fn(t)− c Hn(t) = Fn(t− nc).

Then, it is immediately verified that

(8) Fn

[ n∑
i=1

fn(|xi − yi|)
]

= Hn

[ n∑
i=1

hn(|xi − yi|)
]
.

Hence, from now on, we shall assume that fn(0) = 0 for all n; notice that since fn is
increasing and dom(fn) = D+ ⊆ R+, we have ran(fn) = R+.

Properties 2 and 3 imply that Fn = G ◦ f−1
n . To see this, just notice that for all

x ∈ Dn−1,

d1(a, b) = dn([a,x], [b,x]) = Fn

[
fn(|a− b|) +

n−1∑
i=1

fn(|xi − xi|)
]
,

and, under the assumption that fn(0) = 0, we have that for all n ≥ 3,

d1(a, b) = dn([a,x], [b,x]) = Fn[fn(|a− b|)].

Since, by Property 3, d1(a, b) = G(|a − b|), we have that G(|a − b|) = Fn[fn(|a − b|)].
Let t = fn(|a− b|). Then G(f−1

n (t)) = Fn(t) and Fn = G ◦ f−1
n .

We have therefore established that for all n ≥ 3 ad all x,y ∈ Dn,

(9) dn(x,y) = G

[
f−1

n

( n∑
i=1

fn(|xi − yi|)
)]

,

for some continuous and strictly increasing fn : D+ 7→ R+ (such that fn(0) = 0) and
G : D+ 7→ R+.

We now show that Property 2 allows us to choose the functions fn to be independent
of n (i.e. such that for all n ∈ N, fn = f , for some fixed f) and to extend (9) to the
cases where n < 3.

Property 2 implies immediately that for every a, b, c, d ∈ D, all n ≥ 3 and all x ∈
Dn−2,

(10) d2([a, b], [c, d]) = dn([a, b,x], [c, d,x]).
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Recalling that for every n ≥ 3, fn(0) = 0, and that G is strictly increasing, it follows
from (10) and (9) that, for every n, m ≥ 3 and every x, y ∈ D,

(11) f−1
n (fn(x) + fn(y)) = f−1

m (fm(x) + fm(y)),

and therefore:

(12) fn(x) + fn(y) = fn

[
f−1

m (fm(x) + fm(y))
]
.

The above condition implies that for every n, m ≥ 3, fn(x) = αfm(x) for some constant
α. For, let u = fm(x) and v = fm(y); then:

(13) fn(f−1
m (u)) + fn(f−1

m (v)) = fn(f−1
m (u + v)).

Let h(t) = fn(f−1
m (t)). Then (13) can be rewritten as:

(14) h(u) + h(v) = h(u + v).

But (14) implies that h(t) = αt for some constant α.14 So, taking s = f−1
m (t),

(15) fn(s) = αfm(s),

for some constant α depending on m and n. Now, let f be equal to fm for some fixed
m (say, f = f3) and let c be the appropriate constant satisfying (15) for this fixed m
and a given arbitrary n. Since, by (15), f−1

n (s) = f−1(s/c), it follows that for all n ≥ 3:

f−1
n

[ n∑
i=1

fn(|xi − yi|)
]

= f−1
n

[
c

n∑
i=1

f(|xi − yi|)
]

= f−1
[ n∑

i=1

f(|xi − yi|)
]
.

(16)

To conclude the proof observe that, when x and y have size k < 3, by Property 2 and
given that f(0) = 0, it follows that for any z ∈ Dm:

dk(x,y) = dk+m([x, z], [y, z])

= G

[
f−1

( k∑
i=1

f(|xi − yi|) +
k+m∑

j=k+1

f(|zj − zj|)
)]

= G

[
f−1

( k∑
i=1

f(|xi − yi|)
)]

,

(17)

and so the identity

(18) dn(x,y) = G

[
f−1

( n∑
i=1

f(|xi − yi|)
)]

holds for all n ∈ N. Given that G and f−1 are both continuous and strictly increasing,
H = G ◦ f−1 also is. Notice that, since G(0) = f(0) = 0, H(0) = 0. This concludes
the proof of Lemma 1. 2

14(14) is a Cauchy equation of the first kind whose solution is given for example in Aczel [Acz66].
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Given the above lemma, to prove the “if” direction of Theorem 1 it is sufficient to ver-
ify that any strictly increasing function of the Euclidean distance satisfies Property 5,
that is, it is sufficient to verify that, whenever (xi−xj)(yi−yj) > 0, (xk−xm)(yk−ym) >
0, d1(xi, xj) ≤ d1(xk, xm) and d1(yi, yj) ≤ d1(yk, ym), we have

(19) (xi − yj)
2 + (xj − yi)

2 + (xk − yk)
2 + (xm − ym)2 ≤

≤ (xi − yi)
2 + (xj − yj)

2 + (xk − ym)2 + (xm − yk)
2.

After simplification, this equation becomes

(xm − xk)(ym − yk) ≥ (xj − xi)(yj − yi),

and the result follows. To prove the “only if” direction, we need to show that the
function f in Lemma 1 must be quadratic. Let a, b, c ∈ D be arbitrary non negative
real numbers with a ≥ c. Let also x,y ∈ D4 be such that

• x = [a, (a + c), a, (a + c)]
• y = [0, c, a, (a + c)]

so that

• σ12(y) = [c, 0, a, (a + c)]
• σ34(y) = [0, c, (a + c), a].

Let σ12(y) = w and σ34(y) = z. Since the conditions of Property 5 are satisfied, it
follows that dn(x,w) = dn(x, z); hence, we have that:

H
( n∑

i=1

f(|xi − wi|)
)

= H
( n∑

i=1

f(|xi − zi|)
)

and therefore, since H is one-to-one

n∑
i=1

f(|xi − wi|) =
n∑

i=1

f(|xi − zi|).

Hence, subtracting
∑n

i=1 f(|xi − yi|) from both sides, we obtain

n∑
i=1

f(|xi − wi|)−
n∑

i=1

f(|xi − yi|) = f(a + c) + f(a− c)− 2f(a)

and

n∑
i=1

f(|xi − zi|)−
n∑

i=1

f(|xi − yi|) = 2f(c)− 2f(0).

So that, recalling that f(0) = 0, we must have for all a ≥ c ≥ 0:

f(a + c)− f(a) = f(a)− f(a− c) + 2f(c)

This functional equation has a unique solution f(t) = αt2 for some constant α > 0.
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To see this, consider any sequence xm = mc with m ∈ N+ and mc ∈ D. Let us first
evaluate the difference between two adjacent terms of the sequence f(xm):

f(mc)− f((m− 1)c) = f((m− 1)c)− f((m− 2)c) + 2(f(c))

= f((m− 2)c)− f((m− 3)c) + 2(f(c)) + 2(f(c))
...

= f(c) + 2(m− 1)(f(c))

= (2m− 1)(f(c))

Now, notice that:

f(mc) =
m∑

i=1

(
f(ic)− f((i− 1)c)

)
=

m∑
i=1

(2i− 1)(f(c))

= 2
m2 + m

2
(f(c))−m(f(c)).

So, we obtain the following functional equation:

(20) f(mc) = m2f(c).

Let c = 1
n

for some n ∈ N+. Then:

(21) f
(m

n

)
= m2f

( 1

n

)
.

Letting m = n, we obtain

(22) f(1) = n2f
( 1

n

)
.

Hence, by (21),

(23) f
(m

n

)
= f(1)

m2

n2
,

for all rational m
n
∈ D. Now f(1) = α is a strictly positive constant, since f is strictly

increasing. Thus, by the continuity of f it follows that, for all t ∈ D:

(24) f(t) = αt2

for some constant α > 0, and f−1(u) =
√

u
α
. This concludes the proof.
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6.2. Proof that Properties 1–5 imply order sensitivity. Let y′ be the vector
obtained from y by “swapping” yi and yj, i.e. (i) y′k = yk for all k 6= i, j, (ii) y′i = yj,
and (iii) y′j = yi, and assume xj = xi + ∆x and yj = yi + ∆y, with ∆x and ∆y having
the same sign (i.e. the swap is order-reversing). After the swap, given Theorem 1,
distance will increase whenever:

(xi − yi −∆y)
2 + (xi + ∆x − yi)

2 > (xi − yi)
2 + (xi + ∆x − yi −∆y)

2;

the above inequality is easily seen to be true since ∆x∆y is always positive.

6.3. Proof of Theorem 2. To prove the theorem, just replace Lemma 1 with the
following:

Lemma 2. A distance measure dn satisfies Properties 1, 2∗, 3, 4, if and only if there
exists a continuous and strictly increasing function f : R+ 7→ R+, with f(0) = 0, such
that for all n and all x,y ∈ Dn,

dn(x,y) = H
[ 1

n

n∑
i=1

f(|xi − yi|)
]
,

for some continuous and strictly increasing function H : R+ 7→ R+ with H(0) = 0.

Its proof is equal to that of Lemma 1 up to equation (8), and thereafter continues as
follows.

Let gn = nfn, so that

(25) dn(|x1 − y1|, · · · , |xn − yn|) = Fn[
n∑

i=1

1

n
gn(|xi − yi|)].

Then, following the derivation of equation (21) from equation (14) in Foster and
Shorrocks [FS91], we have that Property 2∗ allows us to choose the functions Fn

and gn to be independent of n (i.e. such that for all m, n ∈ N, Fm = Fn = H and
gm = gn = f , for some fixed H and f) and to extend (25) to the case of n < 3. Thus
dn(x,y) = H

[
1
n

∑n
i=1 f(|xi − yi|)

]
holds for all n ∈ N.

Then, a proof of Theorem 2 is easily obtained by using Lemma 2 instead of Lemma 1
and adapting the proof of Theorem 1 accordingly.

6.4. Proof of Theorem 3. It is left to the reader to verify that, in both statements,
the function on the right-hand side satisfies all the relevant properties. Let us concen-
trate on showing that it is the only function satisfying them. A proof could be obtained
using a similar argument, based on separability properties, as the one used in the proof
of Theorems 1 and 2. Here we provide a simpler proof which uses Theorem 1 and 2 as
lemmas.

First, (2) implies that for all n ∈ N and all x,y,w, z ∈ Dn,

(26) d1(xi, yi) = d1(wi, zi) for all i = 1, · · · , n, =⇒ dn(x,y) = dn(w, z).



20 MARCELLO D’AGOSTINO AND VALENTINO DARDANONI

This means that

dn(x,y) = Fn(d1(x1, y1), . . . , d1(xn, yn)),(27)

for some function Fn, and therefore

dn(x,y) = Fn(|g(x1)− g(y1)|, . . . , |g(xn)− g(yn)|).(28)

Moreover, it also follows from (2), that Fn is one-to-one in each argument.
Now, let d′n be defined as follows:

(29) d′n(x,y) = dn(g−1(x),g−1(y)) = Fn(|x1 − y1|, . . . , |xn − yn|),
where g−1(z) stands for the vector [g−1(z1), . . . , g

−1(zn)]. Clearly, d′n satisfies Properties
4, 1 and 2 (or 2∗) whenever dn does. Moreover, it is not difficult to verify that, whenever
dn satisfies Properties 3∗ and 5, d′n satisfies Properties 3 and 5, with the function G of
Property 3 equal to the identity function.

First, consider Property 3∗. By (28), d1(a, b) = F1(|g(a) − g(b)|), and so d1(a, b) =
|g(a) − g(b)| (Property 3∗) whenever F1 is the identity function. Hence by (29),
d′1(a, b) = |a − b| (Property 3 with G equal to the identity function). As for Prop-
erty 5, first suppose that dn satisfies it. It follows that, whenever the conditions of
Property 5 are satisfied, it must hold true that:

d′n(x,y) = dn

(
g−1(x),g−1(y)

)
≤ dn

(
g−1(x), σij(g

−1(y))
)

= d′n
(
x, σij(y)

)
and

d′n
(
x, σij(y)

)
= dn

(
g−1(x), σij(g

−1(y))
)
≤ dn

(
g−1(x), σmk(g

−1(y))
)

= d′n
(
x, σmk(y)

)
.

This implies that d′n satisfies Property 5.
Therefore, whenever dn satisfies all the properties of Theorem 3.1, d′n satisfies all the

properties of Theorem 1, and we can apply this theorem to establish that d′n must be
the Euclidean Distance. Thus:

Fn(t1, . . . , tn) =

√√√√ n∑
i=1

t2i

and, by (28),

dn(x,y) =

√√√√ n∑
i=1

(g(xi)− g(yi))2.

Similarly, whenever dn satisfies all the properties of Theorem 3.2, d′n satisfies all the
properties of Theorem 2, and we can apply this theorem to establish that d′n must be
the Averaged Euclidean Distance and so:

dn(x,y) =

√√√√ 1

n

n∑
i=1

(g(xi)− g(yi))2
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6.5. A derivation of Property 3∗. Let d1 : R+ × R+ 7→ R+ be a mobility index for
single-family societies. We consider three basic properties that d1 may satisfy. The
first property captures the essence of mobility, since it states that in any society there
is mobility if and only if there is a change in income across the two generations:

Property 6. d1(a, b) ≥ 0 for all a, b ∈ R+, with the equality holding if and only if
a = b.

The second property explicitly states that d1 is symmetric:

Property 7. For all a, b ∈ R+, d1(a, b) = d1(b, a)

A third property deals with the decomposition of mobility amongst different gener-
ations. Consider the income of three successive generations in a family, a, b, c, and
consider the total amount of mobility from the first to the third. In general, it would
seem plainly wrong to assume that the total mobility d1(a, c) should be equal to
d1(a, b) + d1(b, c), since some families may experience first upward and then down-
ward income mobility which would “wash out” in d1(a, c). We assume however that
this property holds whenever a ≥ b ≥ c or c ≥ b ≥ a:

Property 8. For all a, b, c ∈ R+ such that either a ≤ b ≤ c or a ≥ b ≥ c, d1(a, c) =
d1(a, b) + d1(b, c).

Then, we have:

Theorem 4. Properties 6–8 hold if and only if Property 3∗ holds.

Proof. If d1 satisfies Property 3∗, it is easy to verify that it satisfies Properties 6–8.
To prove the converse, let e ≥ 0, be an arbitrary constant and, for any a, let ge(a) be
defined as follows:

ge(a) =

{
d1(e, a) if a ≥ e
−d1(e, a) if a < e.

Now consider d1(a, b) and suppose first that a ≤ b. We distinguish three cases.

(1) If e ≤ a ≤ b, then by Property 8 we have d1(e, b) = d1(e, a) + d1(a, b), that is

d1(a, b) = ge(b)− ge(a).

(2) If a < e ≤ b, then d1(a, b) = d1(a, e) + d1(e, b), and it is easy to check that

d1(a, b) = ge(b)− ge(a).

(3) If a ≤ b < e, then d1(a, e) = d1(a, b) + d1(b, e), and again

d1(a, b) = ge(b)− ge(a).

Suppose now that a > b. A similar argument, using Property 7, leads to the identity

d1(a, b) = ge(a)− ge(b).

It then follows that Property 3∗ holds true. Notice that, if a > b, then d1(a, b) =
ge(a)− ge(b); since d1(a, b) > 0 (by Property 6), it follows that ge(a) > ge(b), that is g
is increasing. �
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